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Exact asymptotic results for persistence in the Sinai model with arbitrary drift
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We obtain exact asymptotic results for the disorder averaged persistence of a Brownian particle moving in
a biased Sinai landscape. We employ a method that maps the problem of computing the persistence to the
problem of finding the energy spectrum of a single-particle quantum Hamiltonian, which can be subsequently
found. Our method allows us analytical access to arbitrary values of the drift~bias!, thus going beyond the
previous methods that provide results only in the limit of vanishing drift. We show that on varying the drift the
persistence displays a variety of rich asymptotic behaviors including, in particular, interesting qualitative
changes at some special values of the drift.
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I. INTRODUCTION

Persistence, i.e., the probability that a fluctuating fi
does not change sign upto timet has been widely studied in
recent years in the context of nonequilibrium systems@1#. A
wide variety of results, both theoretical and experimental,
available for pure systems. In contrast, there have been
few studies of persistence in disordered systems. A not
exception is the study of persistence, theoretical@2# as well
as numerical@3#, in disordered Ising models. In this paper w
study analytically the persistence in another disordered
tem, namely, the celebrated Sinai model@4#, but in the pres-
ence of an additional arbitrary drift. We show that as o
varies the drift parameter, the disorder averaged persist
displays a wide variety of rich behaviors that undergo qu
tative changes at certain special values of the drift.

The Sinai model@4# is perhaps one of the simplest mode
of disordered systems where various disorder avera
physical quantities exhibit rich and nontrivial behaviors a
yet, can be computed analytically@5#. Thus the Sinai mode
serves the role of the ‘‘Ising’’ model in disordered system
In this model a Brownian particle undergoes diffusion in t
presence of a random time-independent potential. The p
tion x(t) of the particle evolves via the Langevin equatio

dx

dt
52

dU

dx
1h~ t !, ~1!

where h(t) is the thermal noise with^h(t)&50 and
^h(t)h(t8)&5d(t2t8) andU(x) is the external potential. In
the biased Sinai model one considers the potential to be
ply U(x)52mx1AsB(x), whereB(x) represents the tra
jectory of a Brownian motion in space, i.e.,B(x)
5*0

xj(x8)dx8 with ^j(x)&50 and^j(x)j(x8)&5d(x2x8).
The parameterm represents the bias or the drift ands mea-
sures the strength of the disorder. Thus the particle is s
jected, in addition to the thermal noiseh(t), to an external
position dependent random forceF(x)52dU/dx5m
1j(x). Various physical quantities in the Sinai model ha
been studied before@5#. Here our aim is to compute th
persistenceP(x0 ,t) defined as the probability that the pa
1063-651X/2002/66~6!/061105~12!/$20.00 66 0611
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ticle does not cross the origin upto timet starting at the
initial position x0>0 at t50. Evidently this quantity will
depend on the realization of the underlying disorder poten
and will, in general, vary from one sample of disorder
another. Our final goal is to compute the disorder avera
persistenceP(x0 ,t) as a function of bothx0 andt for differ-
ent values of the driftm.

Physicists have recently studied the persistence in the
nai model using various methods that include an exact pro
bilistic approach suited for unbiased Sinai model@6#, a study
of an equivalent lattice model with random hopping rates@7#,
and also by employing a real space renormalization gr
method@8#. All of these methods provide asymptotically e
act results, butonly in the limit of vanishing drift, i.e., when
m→0. Unfortunately, extension of these existing physic
methods to extract explicit asymptotic results for arbitra
nonzerom seems rather difficult. Mathematicians, on t
other hand, have studied some aspects of a related qua
namely the distribution of the first-passage time in the Si
model for nonzero drift and some rigorous results seem
exist @9–12#. However, these mathematical methods are
tremely technical and difficult to follow. What is lacking, s
far, is a unified physical approach that, besides reproduc
the known results in a simple and transparent way, provi
exact asymptotic results for allm and yet simple and power
ful enough to be easily generalizable to other problems. T
purpose of this paper is to provide such an approach.
heart of our approach lies in mapping the problem of co
puting the persistence in the Sinai model with arbitrary d
to finding the spectrum of a single-particle quantum Ham
tonian, which can subsequently be done exactly.

Apart from presenting a unified approach valid for arb
trary drift, there are two other physical motivations for th
work. First, it is well known that the Sinai model displays
range of intereresting anomalous diffusion properties as
tunes the driftm through certain finite ‘‘critical’’ values@5#.
It is therefore theoretically interesting to know how the pe
sistence behavior changes as the drift is varied through th
critical values. Second, and perhaps more importantly,
Sinai model with a nonzero drift has numerous physical
plications@5# including the diffusion of electrons in a disor
©2002 The American Physical Society05-1
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dered medium in the presence of an electric field, gla
dynamics of dislocations in solids, dynamics of random fi
magnets, and dynamics near the helix-coil transitions in h
eroploymers. The most recent application of the biased S
model has been to understand the dynamics of denatura
of a single DNA molecule under an external force@13#. Per-
sistence seems to be a natural quantity to study in these
tems and hence we expect that the analytical results
sented in this paper will be useful in many of the physi
situations mentioned above.

The paper is organized as follows. In Sec. II, we pres
our general approach. A detailed discussion of the pure c
(s50) with a nonzero drift is presented in Sec. II A whic
will help us anticipate the general features of persistenc
the disordered case studied later in Sec. II B where we il
trate the mapping to a quantum mechanics problem. In S
III, we discuss the results for the disorder averaged per
tence for positive drift (m.0). The results for the negativ
drift (m,0), fundamentally different from the positive dri
case, are detailed in Sec. IV. We conclude in Sec. V wit
summary and outlook. The details of the derivation of t
eigenvalue spectrum of the quantum Hamiltonian are p
sented in the Appendix A. In Appendix B, we present
alternative derivation of the disordered averaged persiste
in the case of positive drift. The details of the second-or
perturbation theory for negative drift are presented in App
dix C.

II. GENERAL APPROACH

Consider the particle whose positionx(t) evolves via the
Langevin equation~1! starting initially atx(t50)5x0. The
persistenceP(x0 ,t) is the probability that the particle doe
not cross the origin up to timet starting atx0. It is also useful
to define the distribution of the first-passage timeF(x0 ,t* ),
which is simply the probability that the particle hits the o
gin for the first time att5t* starting initially at x0. The
distribution F(x0 ,t* ) is related to the persistenceP(x0 ,t)
via the simple relationP(x0 ,t)512*0

t F(x0 ,t* )dt* . This
follows from the fact that the integral*0

t F(x0 ,t* )dt* sums
up the probabilities of all the events when the particle h
the origin before timet and when subtracted from 1~which is
the total probability!, the resulting quantity, by definition, i
the persistence. Our objective is to first computeF(x0 ,t* ) or
its Laplace transform and then use the above relationshi
compute the persistenceP(x0 ,t).

In order to calculate the first-passage time distribut
F(x0 ,t* ) we employ a powerful backward Fokker-Plan
approach that has been used before to study the persis
in the unbiased Sinai model@6# as well as in other context
@14#. It is instructive to start with a more general quant
Qp(x0)5^exp„2p*0

t
* V[x(t8)]dt8…&x0

, where^& denotes the

thermal average,V@x(t)# is an arbitrary functional andt*
denotes the first-passage time, i.e., the time at which
particle first hits the origin starting initially atx0 at t50.
Note that if we chooseV(x)51, then Qp(x0)5^e2pt

* &x0

5*0
`e2pt

* F(x0 ,t* )dt* is simply the Laplace transform o
the first-passage time distributionF(x0 ,t* ). For the conve-
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nience of notations, we will henceforth denote the initial p
sition x05x and the first-passage timet* 5t.

A differential equation forQp(x) can be derived by
evolving the particle from its initial positionx over an infini-
tesimal time dt. This gives Qp(x)5^(12pVdt)Qp(x
1dx)&, wheredx is the displacement of the particle in tim
dt from its initial position x. Using Eq. ~1! one getsdx
5F(x)dt1h(0)dt, whereF(x)52dU/dx5m1Asj(x) is
the random force. ExpandingQp@x1F(x)dt1h(0)dt# to
orderdt and averaging overh(0), onearrives at the back-
ward Fokker-Planck equation,

1

2

d2Qp

dx2 1F~x!
dQp

dx
2pV~x!Qp50. ~2!

Since here we are interested only in the first-passage
distribution, we will henceforth setV(x)51. Note, however,
that this method is powerful enough to deal with the sta
tical properties of any arbitrary functionalV(x) of the sto-
chastic process. We will also assume, without any loss
generality, that the initial positionx>0. For x<0, one will
obtain the same results by changing the sign of the driftm.
Eq. ~2! is supplemented with the two boundary condition
~i! Qp(x50)51, since if the particle starts atx50, obvi-
ously its first-passage timet50 and ~ii ! Qp(x→`)50,
since the first-passage timet→` if the particle starts atx
5`.

In Secs. II A and II B we discuss the solutions of the d
ferential equation~2!, respectively, for the pure case (s
50) and the disordered case (s.0).

A. Pure case with nonzero drift

It is instructive to discuss first the pure case with nonz
drift (mÞ0) in the absence of the random potential (s
50). The results for the pure case will help us anticipa
what to expect for the disordered case later. Solving Eq.~2!
with F(x)5m we getQp(x)5exp(2@m1Am212p#x) that
satisfies the required boundary conditions. SinceQp(x)
5*0

`e2ptF(x,t)dt, we need to invert the Laplace transfor
that gives

F~x,t !5x~2pt3!21/2e2(x1mt)2/2t. ~3!

Using P(x,t)512*0
t F(x,t8)dt8, one then gets

P~x,t !512
x

A2p
E

0

t

t823/2e2(x1mt8)2/2t8dt8. ~4!

Let us analyze what happens for larget in the three separate
cases~i! m.0, ~ii ! m,0, and~iii ! m50.

~i! For positive bias away from the origin (m.0), the
particle eventually escapes tò with a nonzero probability
and P(x,t)→P(x) as t→`. Taking t→` limit in Eq. ~4!
one easily obtains this eventual persistence ‘‘profile’’P(x)
512e22mx.

~ii ! In the opposite case (m52umu,0), it
follows from Eq. ~4! that as t→`, P(x,t)
'A2/pxumu22t23/2e2(x2umut)2/2t. In this case, a more usefu
5-2
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EXACT ASYMPTOTIC RESULTS FOR PERSISTENCE IN . . . PHYSICAL REVIEW E66, 061105 ~2002!
information is contained in the asymptotic first-passage
tribution F(x,t). From the exact expression ofF(x,t) in Eq.
~3!, we find that in the appropriate scaling limitx→`, t
→` but keepingx/t fixed, the first-passage distribution a
proaches a delta function,F(x,t)→d(t2x/umu). Equiva-
lently the Laplace transformQp(x)→e2px/umu, which also
follows directly from the expression ofQp(x)5exp@
2(Aumu212p2umu)x# in the correct scaling limitx→0, p
→0 but keeping the productpx fixed. Thus in this case, a
late times, the particle essentially moves ballistically w
velocity umu and crosses the origin for the first time att
5x/umu.

~iii ! In the unbiased case (m50), we recover from Eq.~4!
the well known exact result@15#, P(x,t)5erf(x/A2t), where
erf(x)5(2/Ap)*0

xe2u2
du is the error function.

In the following section, we switch on the quenched d
order (s.0) and examine the consequences on
asymptotic properties of the disorder averaged persisten

B. Disordered case with nonzero drift

Unlike the pure case, we can no longer solve the diff
ential equation~2! exactly for the disordered case sin
F(x)5m1Asj(x) now has anx-dependent random part. T
make further progress we first make a Hopf-Cole tra
formation, Qp(x)5exp@2*0

xzp(x8)dx8#. Clearly zp(x)5
2d ln Qp(x)/dx is a slope variable. By construction,Qp(x)
automatically satisfies the boundary conditionQp(x50)
51. Substituting this form ofQp(x) in Eq. ~2!, we find that
the slope variablezp(x) satisfies a first-order stochastic Ri
cati equation

dzp~x8!

dx8
5zp

2~x8!22@m1Asj~x8!#zp~x8!22p. ~5!

The right hand side of the above equation contains a m
plicative noise term and we will interpret it according to t
Stratonovich prescription. Note that since Eq.~5! is a first
order equation,zp(x8) at an arbitraryx8 will be fully deter-
mined as a functional of the noise history$j(x8)%, at least in
principle, provided the value ofzp is known at some ‘‘ini-
tial’’ point. Note that this initial point can be anywhere. Th
program would then be to substitute this fully determin
functional to evaluate the integral*0

xzp(x8)dx8 and thereby
determine Qp(x)5exp@2*0

xzp(x8)dx8#. Subsequently one
would perform the disorder averageQp(x) where the over-
bar indicates an average over the noise history$j(x8)% for
fixed x.

However, there is one problem in implementing this p
gram, namely, the initial value ofzp(x8) is not specified.
Consequently the solution of the first-order equation~5! will
involve an unknown parameter, i.e., the initial value
zp(x8). There exists, however, a rather nice trick to g
around this difficulty. This trick has been used before in
Sinai model in various contexts@5,6,16#. It is useful to out-
line this trick in the present context. To use this trick, we fi
fix x in the definitionQp(x)5exp@2w(x)# where we have
definedw(x)5*0

xzp(x8)dx8. Keepingx fixed we then make
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a change of variable,t5x2x8. Thus, whenx8→`, t→
2` and whenx8→0, t→x. Besidesx85x corresponds to
t50 ~see Fig. 1!. Then w(x)5*0

xzp(x8)dx852*x
0zp(x

2t)dt5*0
xz̃p(t)dt, where z̃p(t)5zp(x2t). In this new t

variable, Eq.~5! becomes

dz̃p~t!

dt
52 z̃p

2~t!12@m1Asj̃~t!# z̃p~t!12p, ~6!

where j̃(t)5j(x2t) and tP@2`,x#. Note that ^j̃(t)&
50 and^j̃(t) j̃(t8)5d(t2t8). To simplify further, we sub-
stitute z̃p(t)5exp@f(t)# in Eq. ~6! and find that the variable
f(t) satisfies a much simplified stochastic equation conta
ing only additive noise~and no multiplicative noise!

df

dt
5b~f!12Asj̃~t!, ~7!

where the source termb(f) is given by

b~f!52ef12m12p e2f. ~8!

What did we gain in the change of variable fromx8
P@0,̀ # to tP@2`,x#? The point is that we have, via thi
change of variable, gotten around the problem of initializ
tion of the original variablezp(x8) at any initial point. To see
this, let us consider Eq.~7! which is valid in the regimet
P@2`,x#. We can interpret this equation now as a simp
Langevin equation describing the evolution of the positi
f(t) of a classical particle with ‘‘time’’t starting fromt
52`. Of course, we still do not know the value off(t) at
t52`. The point, however, is that this initial condition a
t52` is completely irrelevant. No matter what this initia
condition att52` is, it is clear from Eq.~7! that eventually
whent is far away from its starting pointt52`, the sys-
tem will approach a stationary state. This is because
Eq. ~7! describes the noisy thermal motion of a partic
in a classical potentialUcl(f)52*0

fb(u)du5ef22mf
12pe2f2(2p11). Hence the particle will eventually
reach the equilibrium and the stationary probablity distrib
tion of f is simply given by the Gibbs measure

Pst~f!5A expF2
1

2s
Ucl~f!G5A expF 1

2sE0

f

b~u!duG ,
~9!

where b(f) is given by Eq.~8! and A is a normalization
constant such that*2`

` Pst(f)df51. For later purposes we
also definePst(f)5c0

2(f), where

FIG. 1. The change of variablet5x2x8 for fixed x. The new
variable t increases fromt52` ~when x85`) to t5x ~when
x850) through the pointt50 ~whenx85x).
5-3
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c0~f!5AAexpF 1

4sE0

f

b~u!duG ; ~10!

the functionb(f) is given by Eq.~8! and A is such that
*2`

` c0
2(f)df51.

So now we know that starting att52` with an arbitrary
initial condition, by the time the system reachest50, it has
already achieved the stationary measure. But our task is
yet complete. We now have to evolve the system via
equation of motion~7! from t50 to t5x @knowing that at
t50 the distribution off is given by the Gibbs measure i
Eq. ~9!# and evaluate the disorder average

Qp~x!5E@exp$2w~x!%#5EFexpH 2E
0

x

ef(t)dtJ G ,
~11!

where w(t)5*0
tef(t8)dt8 as defined earlier andE@•# de-

notes the expectation value of the random variable inside
parenthesis. Let us introduce the quantityR(f,t)
5Ef@e2lw(t)# that denotes the expectation valuee2lw at
time t with f(t)5f. More precisely, if PJ@w(t)
5w,f(t)5f,t# denotes the joint probability distribution o
the variablesw(t) and f(t) at time t, then R(f,t)
5*e2lwPJ@w,f,t#dw. We have introduced the additiona
parameterl for later convenience, whose value will be eve
tually set to l51. Note that if we setl50, R(f,t) is
simply the probability distribution off at timet. Thus from
now on we will refer to thel50 case as the ‘‘free’’ problem
Whenl51, it is clear that

Qp~x!5E@exp$2w~x!%#5E
2`

`

R~f,x!df. ~12!

The advantage for this small detour in introducing the n
quantityR(f,t) is that one can now write down a Fokke
Planck equation forR(f,t) in a straightforward manner. In
fact, incrementingt to t1dt in the definition R(f,t)
5Ef@exp$2l*0

tef(t8)dt8%# and using the Langevin equatio
~7!, we find thatR(f,t) satisfies the following equation:

]R

]t
52s

]2R

]f2 2b~f!
]R

]f
2@b8~f!1lef#R, ~13!

whereb8(f)5db/df with b(f) given from Eq.~8!. Note
that att50, w(0)50 and henceR(f,0) is just the probabil-
ity distribution of f, which is given by the Gibbs measur
R(f,0)5Pst(f) in Eq. ~9!. Starting with this initial condi-
tion at t50, we need to evolve Eq.~13! up to t5x, deter-
mineR(f,x) and then integrate overf in Eq. ~12! to finally
obtain the desired quantityQp(x). Note that forl50, Eq.
~13! is simply the ordinary Fokker-Planck equation for t
probability distribution off in the free problem.

We next substitute R(f,t)5exp@1/4s*0
fb(u)du#

G(f,t) in Eq. ~13! to get rid of the first derivative term on
the right hand side of Eq.~13! and find the following evolu-
tion equation for the Green’s functionG(f,t):
06110
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]G

]t
52s

]2G

]f22Fa

2
b2~f!1

1

2
b8~f!1lefGG, ~14!

where a51/4s and G(f,0)5exp@21/4s*0
fb(u)du#

R(f,0)5AAc0(f), using the Gibbs measure in Eq.~9!. To
solve Eq.~14! we make the standard eigenvalue decompo
tion

G~f,t!5(
E

cEgE~f!e24sEt, ~15!

where the eigenfunctionsgE(f) satisfy a Schro¨dinger-like
equation,

2
1

2

d2gE~f!

df2 1Fa2

2
b2~f!1

a

2
b8~f!1alefGgE~f!

5EgE~f!, ~16!

with b(f) given by Eq.~8! and a51/4s. The coefficients
cE’s in Eq. ~15! are determined from the initial condition
G(f,0)5AAc0(f). Using orthogonality of eigenfunction
one finds,

cE5AAE
2`

`

dfgE* ~f!c0~f!5AA^gEuc0&, ~17!

where we have used the standard bra-ket notation of qu
tum mechanics. Note also that if we consider the free pr
lem by settingl50, it is easy to verify from Eq.~16! that
there is an eigenfunction with energyE50 which corre-
sponds to the stationary state of the free problem. This z
energy eigenfunction is given precisely byc0(f) in Eq. ~10!
and the Gibbs measure is just the square of this eigenfu
tion, Pst(f)5c0

2(f).
Substituting thecE’s from Eq. ~17! in the decomposition

equation~15! and setting finallyt5x we get the following
expression ofR(f,x) in terms of the eigenfunctions:

R~f,x!5c0* ~f!(
E

^gEuc0&gE~f!e24sEx. ~18!

By integratingR(f,x) in Eq. ~18! over f, we finally obtain
the disorder averageQp(x) in a compact form,

Qp~x!5E
2`

`

R~f,x!df

5E
2`

`

dfc0* ~f!gE~f!(
E

^gEuc0&e
24sEx

5(
E

^gEuc0&^c0ugE&e24sEx

5^c0ue24sĤxuc0&, ~19!

where the quantum HamiltonianĤ in thef basis is given by
5-4
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Ĥ52
1

2

]2

]f21Fa2

2
b2~f!1

a

2
b8~f!1alefG5Ĥ01Ĥ1 .

~20!

Here Ĥ052 1
2 ]2/]f21@(a2/2)b2(f)1(a/2)b8(f)# is the

Hamiltonian of the free problem~corresponding tol50),
Ĥ15laef is like a perturbation Hamiltonian andb(f)5
2ef12m12pe2f.

The exact formula Qp(x)5*0
`dte2ptF(x,t)

5^c0ue24sĤxuc0& in Eq. ~19! is, in fact, the central result o
this paper. This result tells us that the Laplace transform
the disorder averaged first-passage time can, in principle
fully computed for an arbitrary starting positionx, arbitraryp
~and hence for arbitraryt) and also for any value of the drif
m provided one can compute all the eigenvalues and
corresponding eigenfunctions of the HamiltonianĤ in Eq.
~20!. In other words, the calculation of the disorder averag
persistence is reduced to finding the spectrum of the quan
HamiltonianĤ. In Secs. III and IV we show how this spec
trum can be determined in limiting cases that lead to ex
asymptotic results~large t limit ! for the persistenceP(x,t)
for any arbitrary driftm.

The above derivation based on the formal corresponde
between the Fokker-Planck equation and the Schro¨dinger op-
erator obviously requires some mathematical clarificati
The Schro¨dinger operator in Eq.~20! is a self-adjoint opera-
tor with respect to the ordinaryL2 scalar product; wherea
the solution of Eq.~13! belongs, in principle, to a differen
functional space. One can show that the mapping to
Schrödinger problem provides the properly normaliz
eigenfunctions~at least those belong to the discrete branch
the spectrum!; however, the issue of completeness is far fro
being established@17# ~for a related discussion see Re
@18#!. Fortunately in our case there is a strong indication t
this mapping is mathematically sound. Several functionals
the Brownian motion have been computed by probabilis
tools and also by an analysis based on the Morse pote
@19# and the fact that both methods yield the same answe
a strong indication that this mapping is exact.

III. EXPLICIT RESULTS FOR POSTIVE DRIFT „µÌ0…

In this section we focus on the positive drift (m.0) case.
We have seen in Sec. II A that for the pure case, the par
eventually escapes to infinity with a nonzero probabil
when there is a positive drift (m.0) away from the origin.
This escape probabilityP(x) is precisely the persistenc
P(x,t) in the limit t→`. Due to a nontrivial dependence o
this probabilityP(x) on the initial positionx, we call P(x)
the persistence profile. Note that from the relations
P(x,t)512*0

t F(x,t* )dt* , where F(x,t) is the first-
passage time distribution, it follows that the persistence p
file is given byP(x)512*0

`F(x,t* )dt* 512Q0(x), where
we recall thatQp(x)5*0

`e2ptF(x,t)dt is just the Laplace
transform of the first-passage time distribution.

In the disordered case with positive drift, one would e
pect a similar behavior; namely for each sample of disord
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the particle will eventually escape to infinity with a nonze
sample dependent probabilityP(x). The disorder averaged
persistence profile is then given byP(x)512Q0(x). Using
this relationship one can then compute, in the larget limit,
the exact time-independent persistence profile by settinp
50 in the general formula forQp(x) in Eq. ~19! derived in
Sec. II B. For p50, we get from Eq.~8!, b(f)52ef

12m. Substituting thisb(f) in Eq. ~20!, settingl51 and
simplifying, we findĤ5ĤM1n2/8 wheren5m/s and ĤM
is a generalized Morse Hamiltonian given by

ĤM52
1

2

]2

]f21
a2

2
e2f2

a~n21!

2
ef. ~21!

It then follows from Eq.~19! that

Q0~x!5e2sn2x/2^c0ue24sĤMxuc0&. ~22!

To evaluate the matrix element in Eq.~22! explicitly we need
to know the spectrum of the generalized Morse Hamilton
ĤM . Fortunately this spectrum can be fully determined. T
calculation is done in detail in Appendix A. Here we ju
summarize this spectrum and use the results to com
P(x)512Q0(x) explicitly.

The spectrum ofĤM consists of two parts: a discrete pa
with negative energies corresponding to the bound states
a continuous part with positive energies corresponding to
scattering states~see Appendix A!. The nature of the spec
trum depends on the parametern5m/s. It turns out that
there is a critical valuenc52 such that forn.nc the spec-
trum has both the bound states and the scattering state
contrast, forn,nc , there are no bound states and only sc
tering states exist. We notice that a similar behavior w
obtained in the study of transport properties of the Si
model @20#. The eigenvalues and the corresponding eig
functions are given as follows.

Bound States: The bound states are labeled by an integ
n. The eigenvalues are given by

En52 1
2 @n/2212n#2, n50,1, . . .@n/221#, ~23!

where @m# indicates the integer part ofm. Clearly this dis-
crete spectrum exists providedn.2. The corresponding nor
malized eigenfunctions are given by

gn~f!5bne2f/2W(n21)/2,n/2212n~2aef!, ~24!

whereWa,b(x) is the Whittaker function@21#. The normal-
ization constantbn can also be computed exactly~see Ap-
pendix A!

bn
25

2s~n2222n!G~n11!

G~n212n!
, ~25!

whereG(x) is the standard Gamma function.
Scattering States: The scattering states have positive e

ergies labeled by the wave vectorq, Eq5q2/2 with 0<q
<`. The corresponding eigenfunctions are given by

gq~f!5b~q!e2f/2W(n21)/2,iq~2aef!, ~26!
5-5
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where the coefficientb(q) is given by

b~q!5
1

A2p
~2a!2 iq21/2

G~12n/22 iq !

G~22iq !
. ~27!

This coefficientb(q) is chosen such that in the limitf→
2` @where the quantum potential in the HamiltonianĤM in
Eq. ~21! vanishes# the eigenfunctiongq(f) approaches a
plane wave form, i.e.,gq(f)→1/A2p@eiqf1r (q)e2 iqf# as
f→2`, whereeiqf represents an incident wave travelin
in the direction of the positivef and e2 iqf represents the
reflected wave traveling in the opposite direction withr (q)
being the reflection coefficient~for details see Appendix A!.

Having obtained the full spectrum ofĤM we are now
ready to compute the persistence profileP(x)512Q0(x).
Expanding the right hand side of Eq.~22! in the energy basis
of ĤM and using the results on the spectrum ofĤM summa-
rized above, we get

Q0~x!5e2sn2x/2F (
n50

[n/221]

u^gnuc0&u2e2s(n/2212n)2x

1E
0

`

dqu^gquc0&u2e22q2sxG , ~28!

a result that is valid for allx and for allm.0. The function
c0(f) is already known. In fact, forp50, we find from Eqs.
~8! and ~10! the following normalized expression:

c0~f!5
1

AG~n!~2s!n
expF2

1

4s
ef1

n

2
fG . ~29!

Using this expression ofc0(f) and the eigenfunctions in
Eqs. ~24! and ~26! one can easily evaluate the matrix el
ments^gnuc0& and ^gquc0&. For the bound states, we get

^gnuc0&5E
2`

`

dfc0~f!gn~f!

5
bn

A2sG~n!
G~n11!G~n212n!, ~30!

wherebn is given by Eq.~25!. Similarly for the scattering
states, we obtain

^gquc0&5E
2`

`

dfc0~f!gq~f!

5
b~q!

A2sG~n!
G~n/22 iq !G~n/21 iq !, ~31!

with b(q) given by Eq.~27!. Substituting these matrix ele
ments in Eq.~28! we get our final expression,
06110
Q0~x!5
e2sn2x/2

2sG~n! F (
n50

[n/221]

bn
2

3G2~n11!G2~n212n!e2s(n/2212n)2x

1E
0

`

dqub~q!u2uG~n/22 iq !u4e22q2sxG , ~32!

where bn and bq are given, respectively by Eqs.~25! and
~27!. Substituting Eq.~32! in the relationP(x)512Q0(x)
then gives us the exact persistence profile valid for anx
.0 and anym.0.

It is instructive to derive explicitly the tails of this profile
P(x) for small x and largex. Consider first the limitx→0.
While we can use the general solution in Eq.~32! to derive
the small x behavior, it is easier to consider the origin
equation ~19! which for small x gives Q0(x)→1
24sx^c0uĤuc0&. Since Ĥ5Ĥ01Ĥ1 and moreover since
c0(f) is a zero-energy eigenfunction ofĤ0, we getQ0(x)
→124sx^c0uĤ1uc0&. Expanding the matrix element in th
f basis, usingĤ15aef @settingl51 in Eq. ~20!# and the
expression ofc0(f) from Eq.~29! and evaluating the result
ing integral, we getQ0(x)→122snx. Using n5m/s, we
get P(x)52mx as x→0. Thus we obtain an interesting re
sult that the slope 2m characterizing the linear growth of th
profile nearx50 is completely independent of the disord
strengths. In fact, the smallx behavior of the disorder av
eraged persistence profile is identical to that of the pure c

We now turn to the other limitx→`. Here we use Eq.
~32!. First consider the case whenn.2. Then we know from
Eq. ~32! that there exist bound states. In that case it is e
dent that for largex, the term corresponding to the lowe
energy bound state (n50) will be the most dominant term
on the right hand side of Eq.~32!. Retaining only this leading
n50 term in Eq.~32! and usingb0

252s/G(n22) we get
Q0(x)5(n22)/(n21)e22s(n21)x asx→` for n.2. Con-
sider now the opposite case whenn,2. In this case there are
no bound states and there is no contribution from the disc
sum on the right hand side of Eq.~32!. The only contribution
is from the integral representing the scattering states.
large x, the most dominant contribution to the integral w
come from the smallq regime. Expanding theG functions
for small q, we find after preliminary algebra,Q0(x)
5An(2sx)23/2e2n2sx/2 as x→` for n,2, whereAn is a
constant~see below!. Exactly atn52, we get from Eq.~32!,
Q0(x)5e22sx/A2psx for large x. Let us summarize the
three different types of largex behaviors of the persistenc
profile,

12P~x!→5
n22

n21
e22(n21)sx, n.2

1

A2psx
e22sx, n52

An

~2sx!3/2e2n2sx/2, n,2,

~33!
5-6
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where An5p3/2G2(n/2)/G(n)@12cos(pn)#. Evidently the
shape of the profile in Eq.~33! for large x changes asn
varies through the critical pointnc52. The reason for the
existence of this critical point is evident from our analys
Essentially it happens due to the loss of bound states an
decreases fromn.2 to n,2. Note that this critical behavio
at finite n5nc52 could not be derived by the RSR
method. The RSRG method is valid only in then→0 limit
where the exact result in Eq.~33! coincides with the RSRG
results@8#.

We conclude this section by pointing out that it is possi
to have an alternative derivation of the disorder avera
persistence profileP(x) for m.0 by a completely different
method. This method relies on mapping the calculation of
persistence profile to calculate the disorder average of
ratio of two partition functions in the Sinai model. This ma
ping makes use of certain mathematical properties of
Brownian motion. The average of this ratio of partition fun
tions was already computed@9,22# in a different context.
Using those results one can then recover the results in
~33!. The derivation of this mapping is presented in Appe
dix B.

IV. EXPLICIT RESULTS FOR NEGATIVE DRIFT „µË0…

We now turn to the case whenm,0 which corresponds to
a drift towards the origin since the initial positionx.0. The
situation here is very different from the positive driftm.0
case discussed in the preceding section. Form,0, we expect
from the analogy to the pure case that for each sample,
particle will definitely cross the origin ast→` no matter
what the starting positionx is. Hence form,0, the persis-
tence P(x,t)→0 as t→` for all x, unlike the m.0 case
where the persistence approaches a time independent p
P(x,t)→P(x) as t→`. Therefore what is interesting in th
m,0 case is to compute the asymptotic behavior ofP(x,t)
for large t. Recalling the definitions P(x,t)51
2*0

t F(x,t* )dt* and Qp(x)5*0
`e2ptF(x,t)dt, where

F(x,t) is the first-passage time distribution, we see that
analysis of the large but finitet limit of the disorder averaged
persistenceP(x,t) requires an analysis of thep→0 limit of
the Laplace transformQp(x) @rather than exactly atp50
whereQ0(x)51 trivially for m,0]. In fact we will see later
in this section that in this limitP(x,t) or equivalentlyF(x,t)
display a variety of scaling behaviors as one tunes the
evant parametern852m/s.

As in the case ofm.0, the starting point of our analysi
for m,0 is the central result in Eq.~19! which is valid for all
m. Unlike the m.0 case, we cannot, however, putp50
straightway in the HamiltonianĤ in Eq. ~20!. To derive the
time-dependent asymptotics for larget, we need to analyze
the spectrum ofĤ keepingp small but nonzero. Unfortu-
nately, for nonzerop, it is hard to determine the full spectrum
of Ĥ exactly. Fortunately, however, it is possible to extra
the leading asymptotic behavior asx→` andp→0 without
too much trouble. To see this, we consider the energy eig
value decomposition in the second line on the right hand s
06110
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of Eq. ~19! and find that asx→` the leading contribution
comes from the ground state energyE0 of Ĥ,

Qp~x!→u^c0ug0&u2e24sE0x, ~34!

whereug0& is the ground state ofĤ. It is clear from Eq.~34!
that to evaluate the largex asymptotics we just need to com
pute the ground state energyE0 of the HamiltonianĤ in Eq.
~20!. Unfortunately, even the ground state energyE0 is hard
to compute exactly for arbitraryp. One can, however, mak
progress in thep→0 limit. To see this we recall thatuc0& in
Eq. ~34! is the exact zero energy eigenstate of the free par
the HamiltonianĤ0 @see the discussion after Eq.~17!#, i.e.,
Ĥ0uc0&50. Knowing this exact fact, we can then determi
the ground state energyE0 of the full HamiltonianĤ5Ĥ0

1Ĥ1 by treatingĤ15laef ~where eventually we will set
l51) as a perturbation to the free HamiltonianĤ0. For
example, to first order in the perturbation term, we getE0

501^c0uĤ1uc0& where 0 indicates the fact that the groun
state energy of the unperturbed HamiltonianĤ0 is exactly 0.
We then decompose this matrix element^c0uĤ1uc0& in thef

basis and useĤ15aef ~setting l51) to obtain E0

5a*2`
` c0

2(f)efdf. The normalized wave functionc0(f)
is already known from Eq.~10! and has the following ex-
plicit expression:

c0~f!5A ~2p!n8/2

2Kn8~A2p/s!
expF2

ef

4s
2

n8

2
f2

p

2s
e2fG ,

~35!

whereKa(x) is the modified Bessel function of indexa @21#
and we have used the definitionn852m/s. Using this ex-
plicit form of c0(f) and carrying out the integral inE0

5a*2`
` c0

2(f)efdf, we get, to first order in perturbatio
theory,

E05aA2p
K12n8~A2p/s!

Kn8~A2p/s!
. ~36!

The result in Eq.~36! is only up to first order inĤ1. It is
not clear, so far, why one should stop at first order only.
other words, we have not yet specified in what senseĤ1 is
‘‘small’’ compared toĤ0. Note that in deriving Eq.~36! we
have not yet taken thep→0 limit. In the limit p→0, using
the asymptotic properties of Bessel functions@21# in Eq.
~36!, we find

E0→5
a

s~n821!
p, n8.1

2
a

s
p ln p n851

aBn8p
n8 0,n8,1,

~37!
5-7
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where we recall thata51/4s and the constantBn8 is given
by

Bn85
212n8G~12n8!

s2n821G~n8!
. ~38!

Thus, in general,E0;pa as p→0, wherea51 for n8>1
anda5n8 for n8<1 with additional logarithmic correction
at n851. Hence basicallyE0 is small for smallp. Naively
one would expect that if, indeed, we carry out the pertur
tion theory inĤ1 to higher orders, the resulting terms will b
lower order in p as p→0. This naive expectation, fortu
nately, turns out to be true. In fact we show in Appendix
how to estimate the second order term for smallp and it
turns out to be at least ofO(pa11) and hence negligible
compared to the first-order term@;O(pa)# in the p→0
limit. For smallp, this argument therefore justifies in keepin
only the first-order term in the perturbation theory in eva
atingE0. Note that the eigenfunctionug0& also gets modified
from the free eigengunctionuc0& due to the perturbation
term.

Substituting thep→0 results from Eq.~37! in Eq. ~34! for
largex and usinga51/4s, we then get three different type
of scaling behaviors depending onn8,

Qp~x!→H exp@2px/s~n821!#, n8.1

exp@p ln~p!x/s#, n851

exp@2Bn8p
n8x#, n8,1,

~39!

whereBn8 is given by Eq.~38!. Note that to leading order in
small p, we need to keep only the zeroth-order term in t
amplitudeu^c0ug0&u2 of the exponential in Eq.~34!. To the
zeroth orderug0&5uc0& and hence to leading order this am
plitude is exactly 1 sinceuc0& is normalized. Thus it is evi-
dent from Eq.~39! that forn8.1, the correct scaling limit is
x→`, p→0 but keeping the productpx fixed. On the other
hand, forn8,1, the correct scaling combination ispn8x.

It turns out that the exact asymptotic results in Eq.~39!
were also derived recently by mathematicians by using c
pletely different methods that involved rather heavy ma
ematical machineries. The first derivation is due to Kawa
and Tanaka who used the so called Kotani’s formula a
Krein’s theory of strings@10,11#. However their method did
not permit the explicit evaluation of the constantBn8 . More
recently, Huet al. @12# presented yet another completely d
ferent derivation by mapping the persistence problem w
negative drift onto that of a Bessel process and then u
some theorems on this Bessel process. Huet al. managed to
compute the coefficientBn8 explicitly. Note, however, that
the constantBn8 in Ref. @12# has an apparently rather diffe
ent looking form than our expression in Eq.~38! and it re-
quires a bit of work to show that indeed they are exac
identical.

To derive the asymptotic properties of the first-pass
time distributionF(x,t) in the time domain, we need to in
vert the Laplace transform in Eq.~39! with respect top. For
n8.1, the Laplace inversion is trivial and we getF(x,t)
06110
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5d„t2x/s(n821)… in the scaling limit x→`, t→` but
keeping the ratiox/t fixed. This result is very similar to the
pure case. Thed function indicates that at late times th
particle basically moves ballistically with an effective velo
ity s(n821). Similarly for n851, by inverting the Laplace
tranform we find that in the scaling limitx→`, t→` but
keeping the ratiox ln(x)/t fixed, F(x,t)5d„t2x ln(x)/s….
The situation becomes somewhat different forn8,1. In this
case the Laplace inversion indicates that in the scaling li
x→`, t→`; but keeping the ratiox1/n8/t fixed, the first-
passage time distribution approaches a scaling formF(x,t)
;(1/t) f (t/x1/n8). The scaling functionf (y) can be formally
written in terms of Le´vy function Ln8(y) and we getf (y)
5yLn8(y). The Lévy function is formally defined by the
Bromwich integral~see the Appendix of Ref.@5#!

Ln8~y!5
1

2p i Ed2 i`

d1 i`

dsesy2Bn8sn8
, ~40!

whered is such that thes5d line in the complexs plane lies
to the right of all the singularities~branch cuts! but is other-
wise arbitrary.

An explicit expression of the Le´vy function can be ob-
tained only for a few special values ofn8 @5#. For example,
for n851/2, we getf (y)5yL1/2(y)5e21/2y/A2py. This in-
dicates thatF(x,t)5xe2x2/4t/A2pt3 and hence the persis
tence P(x,t)512*0

t F(x,t8)dt85erf(x/A2t). We thus ar-
rive at an amazing result that forn851/2, i.e.,m52s/2, the
disorder averagedpersistence has the same asymptotic
havior as thepure case without drift(m50, s50) ~as de-
rived in Sec. II A!. A similar coincidence at this special valu
of n851/2 was also noted in the context of occupation tim
distribution in the Sinai model@16#. Thusm52s/2 seems to
be a special line in the (m2s) plane where the Sinai mode
with drift shares the same asymptotic properties
the pure unbiased Brownian motion. Another solvab
point is n851/3, where we get f (y)5yL1/3(y)
5(a0/2pAy)K1/3(a0 /Ay) with the constant a0

54/33/2@G(2/3)/G(1/3)#3/2As.
For generaln8,1, while we cannot calculate the scalin

function f (y) explicitly, the behaviors at the tails can b
easily determined. For example, first consider the limity

5t/x1/n8→`, i.e., whent@x1/n8. Using the largey behavior
of the Lévy function @5# Ln8(y)'Bn8G(1
1n8)sin(pn8)/pyn811, we getF(x,t)'b0x/tn811, whereb0

5n8212n8/G(n8)s2n821. The persistence P(x,t)51
2*0

t F(x,t8)dt8 then behaves in this limit as

P~x,t !'
212n8

G~n8!s2n821

x

tn8
, t@x1/n8, ~41!

indicating a power law decayP(x,t);t2u for large t where
the persistence exponentu5n8. We now turn to the
other tail of the scaling functionf (y) when y5t/x1/n8

→0, i.e., when t!x1/n8. Using the properties of the
Lévy function near y→0 @5#, we get f (y)5yLn8(y)
5-8
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EXACT ASYMPTOTIC RESULTS FOR PERSISTENCE IN . . . PHYSICAL REVIEW E66, 061105 ~2002!
'e2(12n8)/n8z/A2p(12n8)z, where z5(yn8/n8Bn8)
1/(12n8).

This indicates an essential singularity aty50. Using this
asymptotic behavior ofF(x,t) in the relation P(x,t)51
2*0

t F(x,t8)dt8 we find the following behavior for the per
sistence:

P~x,t !'12
1

A2pb1~12n8!
S x

tn8D 21/2(12n8)

3expF2
12n8

n8
b1S x

tn8D 1/(12n8)G , t!x1/n8, ~42!

whereb15(n8Bn8)
1/(12n8) andBn8 is given by Eq.~38!.

Let us summarize the main behavior of the disorder av
aged persistence forn8,1. We find that forn8,1, there
exists a single time scaletx;x1/n8 depending on the initia
position x. For t@tx , the persistenceP(x,t) decays as a
power law with an exponentu5n8 and the amplitude of the
power law depends onx as in Eq.~41!. In the opposite limit
whent!tx , the persistence drops extremely sharply from
initial value P(x,0)51 as indicated by the essential sing
larity in the second term on the right hand side of Eq.~42!

when t!x1/n8.
Let us conclude this section on negative drift by one fi

remark. We note that even though we have assumed thro
out this section thatm is strictly negative, we can safely tak
the limit m→02 in Eq. ~36! which givesE0'21/@2 ln p# in
the limit p→0. It then follows from Eq.~34! that in the limit
of vanishing drift, one gets the asymtotic resultQp(x)→1
1(2s/ ln p)x1 . . . , when x!21/ln p. From this it follows
that P(x,t)'2sx/ ln t for ln t@x, thus recovering the stan
dard Sinai model behavior in the zero drift limit@8,6#.

V. SUMMARY AND PERSPECTIVES

In summary, we have obtained exact asymptotic res
for the disorder averaged persistence in the Sinai model
an arbitrary drift. Our method maps exactly the problem
computing the persistence to the problem of finding the
genvalue spectrum of a single-particle quantum Hamilton
We have shown that it is possible to find this spectrum
certain cases that allowed us to obtain exact asymptotic
sults for arbitrary drift. We note that these results could
have been obtained from the existing physical methods~e.g.,
the RSRG method! that provide exact results only in th
limit of zero drift. Our results show that there is a rich va
ety of asymptotic behaviors in the persistence as one tu
the drift. In particular, the asymptotics undergo interest
‘‘phase transitions’’ at certain critical values of the contr
parametern ~the relative strength of the drift over the diso
der!, e.g., atn52, n50, andn521. It would be interest-
ing to extend the exact method presented here to calcu
other properties in the Sinai model with finite drift, such
the persistence of a thermally averaged trajectory for wh
the results in the zero drift limit are already known@8,7#.
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APPENDIX A: DERIVATION OF THE SPECTRUM
OF THE HAMILTONIAN Ĥ M

In this appendix we derive the spectrum of the gene
ized Morse HamiltonianĤM given by Eq.~21!. We show that
the spectrum has a discrete part with negative energies
responding to the bound states and also a continuous
with positive energies corresponding to scattering states.
eigenfunctions satisfy the Schro¨dinger-like equation,

2
1

2

d2gE~f!

df2 1Fa2

2
e2f2

a~n21!

2
efGgE~f!5EgE~f!.

~A1!

Let us remind the readers thata51/4s. It turns out to be
convenient to make a change of variabley52aef. Further-
more, let us substitutegE(f)5e2f/2f (2aef) in Eq. ~A1!.
Then the functionf (y) satisfies the differential equation

d2f

dy2 1F2
1

4
1

~n21!

2y
1

1/412E

y2 G f ~y!50, ~A2!

where we have suppressed theE dependence of the functio
f (y) for notational convenience. We next consider the ne
tive and the positive part of the spectrum separately.

Bound states: The bound states are in the negative ene
part of the spectrum. Let us substituteE52g2/2 in Eq.~A2!
where g is the eigenvalue to be determined. The seco
order differential equation~A2! with E52g2/2 is known to
have two linearly independent solutionsW(n21)/2,g(y) and
W2(n21)/2,g(2y) whereWa,b(x) is the Whittaker function
@21#. Thus the most general solution of Eq.~A2! can be
written as

f ~y!5D1W(n21)/2,g~y!1D2W2(n21)/2,g~2y!, ~A3!

whereD1 and D2 are arbitrary constants. For a large arg
ment, the Whittaker function is known to have th
asymptotic behavior@21# Wa,b(x);xae2x/2. On the other
hand the bound states must be normalizable and hence
eigenfunctiongE(f) must vanish asf→6`. The vanishing
boundary condition atf5` indicates that the constantD2
50. Note that here we have assumedg.0. If g,0, then
this boundary condition instead setsD150. However, the
resulting solution is the same. In other words the eigenfu
tions corresponding tog and2g are the same and not lin
early independent of each other. Thus without any loss
generality we can assumeg.0 and setD250. Thus the
eigenfunction in terms of the original variable is given by

gE~f!5D1e2f/2W(n21)/2,g~2aef!. ~A4!

Note that the eigenvalueg is yet to be determined. This i
done by employing the vanishing boundary condition at
other tail, namely,gE(f)→0 asf→2`. Using the smallx
5-9
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behavior of the Whittaker function, Wa,b(x)
→G(2b)/G@1/21b2a#x2b11/2 as x→0 in Eq. ~A4! as f
→2`, we get

gE~f!'D1~2a!2g11/2
G~2g!

G~12n/21g!
e2gf. ~A5!

Thus the eigenfunction diverges exponentially asf→2`.
The only way the eigenfunction can satisfy the bound
condition gE(2`)50 is if the denominatorG(12n/22g)
in Eq. ~A5! is infinite. This happens when the argument
the Gamma function is a negative integer 12n/22g52n
with n50,1, . . . . This thus fixes the eigenvalueg5n/221
2n with n50,1, . . . . However, note that the conditiong
.0 indicates that the maximal allowed value forn is @n/2
21#, where@x# denotes the integer part ofx. Thus finally the
bound states have discrete eigenvaluesE52g2/252(n/2
212n)2/2 and the corresponding eigenfunctions, labeled
n, are given by

gn~f!5bne2f/2W(n21)/2,n/2212n~2aef!, ~A6!

wherebn5D1 is to be fixed from the normalization cond
tion *2`

` gn
2(f)df51. To perform this integral, we first us

the fact that for positive integern, one can rewrite the Whit-
taker function in terms of the Laguerre polynomials@21# and
then use the following identity~see the Appendix of Ref
@23#!:

E
0

`

dxxa21e2x@Ln
a~x!#25

G~a1n11!

aG~n11!
. ~A7!

One obtains

bn
25

2s~n2222n!G~n11!

G~n212n!
. ~A8!

Scattering states: We now turn to the positive energy pa
of the spectrum and setE5q2/2 in Eq. ~A2!. The resulting
differential equation, once again, has two linearly indep
dent solutionsW(n21)/2,iq(y) and W2(n21)/2,iq(2y). Note
that the functionW2(n21)/2,iq(2y)5W2(n21)/2,iq(22aef)
;exp(ef) as f→`. Since the eigenfunctiongE(f), even
though non-normalizable for scattering states, cannot dive
superexponentially asf→`, this second solution is not al
lowed. Keeping only the first solution, we get the eigenfu
tions, now labeled byq,

gq~f!5b~q!e2f/2W(n21)/2,iq~2aef!. ~A9!

The question is how to determine the constantb(q) in Eq.
~A9!. This is because, unlike the bound states, the eigenfu
tions in Eq. ~A9! are non-normalizable. To see, this let
examine the behavior ofgq(f) near the tailf→2`, as in
the discrete case. Using the asymptotic properties of
Whittaker function, we find that, asf→2`,
06110
y

f

y

-

ge

-

c-

e

gq~f!→b~q!F G~22iq !

G~12n/22 iq !
~2a! iq11/2eiqf

1
G~2iq !

G~12n/21 iq !
~2a!2 iq11/2e2 iqfG .

~A10!

Clearly the gq(f) functions are non-normalizable. More
over, unlike in the case of bound states where the bound
condition atf52` decides the discrete eigenvalues, in th
case we have no such condition indicating that all poss
values ofq>0 are allowed. Note that, as in the discrete ca
q.0 and q,0 correspond to the same eigenfunction a
hence the allowed values ofq lie in the range 0<q<`. To
determine the constantb(q) we note that in the tailf→
2`, the quantum potential in Eq.~A1! vanishes. The result
ing differential equation withE5q2/2 allows plane wave
solutions of the form

gq~f!'
1

A2p
@eiqf1r ~q!e2 iqf#, ~A11!

whereeiqf represents the incoming wave coming fromf5
2` ande2 iqf represents the reflected wave going towa
f52` with r (q) being the reflection coefficient. The am
plitude 1/A2p ensures that the plane wavescq(x)
51/A2peiqx are properly orthonormalized in the sense th
^cqucq8&5d(q2q8) whered(z) is the Dirac delta function.
Comparing Eqs.~A10! and~A11! in the regimef→2`, we
determine the constantb(q) up to a phase as

b~q!5
1

A2p
~2a!2 iq21/2

G~12n/22 iq !

G~22iq !
. ~A12!

This completes the derivation of the spectrum of t
HamiltonianĤM .

APPENDIX B: ALTERNATIVE DERIVATION OF THE
PERSISTENCE PROFILE FOR µÌ0

For each sample of the disorder, the persistence pro
P(x) is related to the Laplace transformQp(x) of the first-
passage time distribution atp50 via the relationP(x)51
2Q0(x). The quantityQ0(x) can be obtained exactly b
solving the Eq.~2! with p50,

Q0~x!512
Zm~x!

Zm~`!
, ~B1!

whereZm(x)5*0
xe2U(x8)dx8 is the partition function in a fi-

nite box of size x with U(x)52*0
xF(x8)dx852mx

1AsB(x) being the random potential. It turns out to b
useful to rewrite Eq.~B1! in a slightly different form using a
well known property of the Brownian motion: IfB(x) is a
Brownian motion, then B(x)2B(x8)[B̃(x2x8) where
B̃(x) is another independent Brownian motion and[ indi-
cates that the random variables on both sides have the i
5-10
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tical distribution, though they are not equal. Using this pro
erty and after a few steps of elementary algebra, one
rewrite Eq.~B1! as

Q0~x!512P~x!5
Zm~`!

Zm~`!1Z̃2m~x!
, ~B2!

where z̃2m(x)5*0
xe22mx812B̃(x8)dx8. Interestingly, exactly

the same ratio as in Eq.~B2! has appeared earlier in othe
contexts and its average~over disorder! is known exactly
@9,22#. Using these known results and settingn5m/s, we
get exactly the same asymptotic~largex) persistence profile
as in Eq.~33!, which was obtained in Sec. III using a com
pletely different method.

APPENDIX C: ESTIMATION OF THE ENERGY CHANGE
DUE TO THE SECOND-ORDER TERM IN

PERTURBATION THEORY FOR µË0

In this appendix we consider the casem,0 and provide
an estimate of the second-order contributionDE2 to the
ground state energyE501DE11DE2 of the full Hamil-
tonian Ĥ5Ĥ01Ĥ1 given by Eq. ~20!, treating Ĥ15aef

~settingl51) as a perturbation to the unperturbed Ham
tonian Ĥ052 1

2 ]2/]f21VQ(f). The quantum potentia
VQ(f) is given explicitly by

VQ~f!5
a

2 Fae2f1~n821!ef14aS n82

16a2 2pD
22p~n811!e2f14ap2e22fG . ~C1!

In writing the explicit form of the potential we have subs
tuted the expression ofb(f) from Eq. ~8! in Eq. ~20! and
used the definitiona51/4s. Let us recall that the ground
state energy of the unperturbed HamiltonianĤ0 is 0 and the
ground state wave function isc0(f) given explicitly by Eq.
~35! is Sec. IV. The first-order contributionDE1

5^c0uĤ1c0& was already evaluated exactly in Eq.~36! and
was shown to scale as;pa asp→0 with a51 for n8&1 and
a5n8 for n8,1. The goal of this appendix is to show th
the second-order contributionDE2 is negligible compared to
DE1 asp→0.

Note that forp.0, it is clear from Eq.~C1! that VQ(f)
→` asf→6`. This indicates that forp.0 the spectrum
of Ĥ0 is discrete and consists of bound states only. Letcn’s
denote the discrete energy eigenfunctions ofĤ0 with the
corresponding eigenvalues denoted byen . The second-orde
contribution to the ground stateDE2 then follows from the
standard quantum mechanics,

DE25 (
n.0

u^c0uĤ1ucn&u2

e02en
52 (

n.0

^c0uĤ1ucn&u2

en
,

~C2!
06110
-
an

-

where we have used the fact thate050 as discussed earlie
Using the facte1,e2,e3 , . . . , in Eq.~C2!, one can imme-
diately obtain an upper bound to2DE2,

2DE2<
1

e1
(
n.0

u^c0uĤ1ucn&u2. ~C3!

By adding and subtracting then50 term to the sum on the
right hand side of the above inequality and using the co
pleteness of eigenfunctions we get

2DE2<
1

e1
@^c0uĤ1

2uc0&2u^c0uĤ1uc0&u2#. ~C4!

The quantityS5^c0uĤ1
2uc0&2u^c0uĤ1uc0&u2 inside the

parenthesis on the right hand side of the inequality~C4! can
be evaluated exactly. In general, for anym, one can express
the matrix element̂ c0uĤ1

muc0&5am*2`
` c0

2(f)emfdf in

the f basis by usingĤ15aef. We then substitute the ex
plicit expression ofc0(f) from Eq. ~35!. The resulting inte-
gral can be performed exactly using the identity@21#

E
0

`

xn21e2gx2b/xdx52S b

g D n/2

Kn„2A~bg…. ~C5!

In fact, throughout this paper, we have heav
used this identity. We then get ^c0uĤ1

muc0&
5am(2p)m/2Km2n8(A2p/s)/Kn8(A2p/s). The expression
of S requires the results form52 andm51 and we get

S~p!52a2pFK22n8~A2p/s!

Kn8~A2p/s!
2

K12n8
2

~A2p/s!

Kn8
2~A2p/s!

G .

~C6!

FIG. 2. The shape of the potentialVQ(z) in Eq. ~C7! is shown
for parameter values:a51, n850.5, andp50.1. The potential has
a minimum atz5z0;p and a typical widthW;p in the limit p
→0.
5-11
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Using the expansion of Bessel functions for small argume
@21#, it is easy to show that in the limitp→0, S(p);p2 for
n8.2, S(p)→2p2ln p for n852 and S(p);pn8 for n8
,2.

Having established the behavior ofS for smallp, we now
need to estimate the gape1 ~the energy of the first excited
state ofĤ0) for smallp on the right hand side of the inequa
ity 2DE2<S(p)/e1 in Eq. ~C4!. To estimate the gap, w
examine the quantum potential in Eq.~C1!. It is convenient
first to make a change of variablez5ef so that 0<z<`. In
this new variable the quantum potential in Eq.~C1! reads

VQ~z!5
a

2 Faz21~n821!z14aS n82

16a2 2pD
2

2p~n811!

z
1

4ap2

z2 G . ~C7!

The shape of this potential is shown in Fig. 2. Note that
potentialVQ(z) has a minimum atz5z0, determined from
the equationdVQ(z)/dz50, which gives 2az0

41(n821)z0
3

12p(n811)z028ap250. In the limit p→0, the only real
root of this equation is atz0'4ap/(n811). The value of the
potential at this minimumVQ(z0)→2(2n811)/81O(p) as
p→0. We also need to estimate the typical width of t
potentialW(e) at an energye for small p ~see Fig. 2!. The
ur

e

es

e

s

06110
ts

e

points z6(e), whereVQ(z)5e, can be easily estimated fo
smallp since in this limit one just needs to solve a quadra
equation and we get

z6~e!'
4a

@n8117A2n81112e#
p1O~p2!. ~C8!

Hence the typical width of the potential at energye scales as
W(e)'z1(e)2z2(e);p in the p→0 limit at any finite
level e. For smallp, one can approximate the potentialVQ(z)
around its minimumz5z0 by a harmonic oscillator potential
Vq(z)'2(2n811)/81v2z2/2 where the frequencyv is es-
timated from the typical width, i.e.,v2W2/2;O(1). Since
W(e);p, we find that the frequency scales asv;1/p asp
→0. One knows that the gap between the first excited s
and the ground state in a harmonic potential scales ase1
;v. Thus we estimate that the energy of the first exci
state scales ase1;v;1/p in the limit p→0.

Substituting this estimate of the gap in the inequal
2DE2<S(p)/e1 and using the smallp estimates ofS(p)
derived earlier, we find that asp→0, 2DE2<p3 for n8

.2, 2DE2<2p3ln p for n852 and2DE2<pn811 for n8
,1. Comparing these results with the first-order contrib
tion, whereDE1;p for n8.1 andDE1;pn8 for n8,1, we
conclude that the second-order contribution is negligi
compared to the first-order term in the limitp→0.
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