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Exact asymptotic results for persistence in the Sinai model with arbitrary drift
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We obtain exact asymptotic results for the disorder averaged persistence of a Brownian particle moving in
a biased Sinai landscape. We employ a method that maps the problem of computing the persistence to the
problem of finding the energy spectrum of a single-particle quantum Hamiltonian, which can be subsequently
found. Our method allows us analytical access to arbitrary values of the(liaf), thus going beyond the
previous methods that provide results only in the limit of vanishing drift. We show that on varying the drift the
persistence displays a variety of rich asymptotic behaviors including, in particular, interesting qualitative
changes at some special values of the drift.
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[. INTRODUCTION ticle does not cross the origin upto timestarting at the
initial position x,=0 att=0. Evidently this quantity will
Persistence, i.e., the probability that a fluctuating fielddepend on the realization of the underlying disorder potential
does not change sign upto tindas been widely studied in and will, in general, vary from one sample of disorder to
recent years in the context of nonequilibrium systgédisA  another. Our final goal is to compute the disorder averaged
wide variety of results, both theoretical and experimental, argersistencé(x,,t) as a function of bottx, andt for differ-
available for pure systems. In contrast, there have been veent values of the drifj.
few studies of persistence in disordered systems. A notable Physicists have recently studied the persistence in the Si-
exception is the study of persistence, theoretiedlas well  nai model using various methods that include an exact proba-
as numerical3], in disordered Ising models. In this paper we bilistic approach suited for unbiased Sinai mofd| a study
study analytically the persistence in another disordered syf an equivalent lattice model with random hopping rdi@s
tem, namely, the celebrated Sinai mof#, but in the pres- and also by employing a real space renormalization group
ence of an additional arbitrary drift. We show that as onemethod[8]. All of these methods provide asymptotically ex-
varies the drift parameter, the disorder averaged persistenegt results, bubnly in the limit of vanishing drifti.e., when
displays a wide variety of rich behaviors that undergo quali-,—0. Unfortunately, extension of these existing physical
tative changes at certain special values of the drift. methods to extract explicit asymptotic results for arbitrary
The Sinai modef4] is perhaps one of the simplest models nonzerou seems rather difficult. Mathematicians, on the
of disordered systems where various disorder averagegther hand, have studied some aspects of a related quantity
physical quantities exhibit rich and nontrivial behaviors andnamely the distribution of the first-passage time in the Sinai
yet, can be computed analyticallg]. Thus the Sinai model model for nonzero drift and some rigorous results seem to
serves the role of the “Ising” model in disordered systems.exist[9—-12]. However, these mathematical methods are ex-
In this model a Brownian particle undergoes diffusion in thetremely technical and difficult to follow. What is lacking, so
presence of a random time-independent potential. The posfar, is a unified physical approach that, besides reproducing
tion x(t) of the particle evolves via the Langevin equation the known results in a simple and transparent way, provides
exact asymptotic results for gli and yet simple and power-
d_x_ _ d_U+ (t) (1) ful enough to be easily generalizable to other problems. The
dt dx M purpose of this paper is to provide such an approach. The
. ) ) heart of our approach lies in mapping the problem of com-
where n(t) is the thermal noise with(7(t))=0 and puting the persistence in the Sinai model with arbitrary drift
(n(t) n(t'))=&(t—t") andU(x) is the external potential. In  to finding the spectrum of a single-particle quantum Hamil-
the biased Sinai model one considers the potential to be simpnjan, which can subsequently be done exactly.
ply U(x)=— ux+JoB(x), whereB(x) represents the tra-  Apart from presenting a unified approach valid for arbi-
jectory of a Brownian motion in space, i.eB(X) trary drift, there are two other physical motivations for this
= [5&(x")dx" with (£(x))=0 and(&(x)&é(x"))=48(x—x").  work. First, it is well known that the Sinai model displays a
The parameter. represents the bias or the drift andmea-  range of intereresting anomalous diffusion properties as one
sures the strength of the disorder. Thus the particle is sultunes the driftw through certain finite “critical” valueg5].
jected, in addition to the thermal noisgt), to an external It is therefore theoretically interesting to know how the per-
position dependent random forcé(x)=—dU/dx=u sistence behavior changes as the drift is varied through these
+ &(x). Various physical quantities in the Sinai model havecritical values. Second, and perhaps more importantly, the
been studied beforgs]. Here our aim is to compute the Sinai model with a nonzero drift has numerous physical ap-
persistenceP(xg,t) defined as the probability that the par- plications[5] including the diffusion of electrons in a disor-
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dered medium in the presence of an electric field, glassyience of notations, we will henceforth denote the initial po-
dynamics of dislocations in solids, dynamics of random fieldsition xo=x and the first-passage tintg =t.
magnets, and dynamics near the helix-coil transitions in het- A differential equation forQ,(x) can be derived by
eroploymers. The most recent application of the biased Sinavolving the particle from its initial positior over an infini-
model has been to understand the dynamics of denaturatiagesimal time dt. This gives Q,(x)=((1—pVd)Qp(x
of a single DNA molecule under an external fofde]. Per-  +dx)), wheredx is the displacement of the particle in time
sistence seems to be a natural quantity to study in these sydt from its initial position x. Using Eg. (1) one getsdx
tems and hence we expect that the analytical results pre=F(x)dt+ 7(0)dt, whereF(x) = —dU/dx= u+ Jo&(x) is
sented in this paper will be useful in many of the physicalthe random force. Expandin@,[x+ F(x)dt+ 5(0)dt] to
situations mentioned above. orderdt and averaging ovep(0), onearrives at the back-
The paper is organized as follows. In Sec. Il, we presenfvard Fokker-Planck equation,
our general approach. A detailed discussion of the pure case
(o=0) with a nonzero drift is presented in Sec. Il A which 1d%Q, dQ
will help us anticipate the general features of persistence in 2 dx? +F(X)
the disordered case studied later in Sec. Il B where we illus-
trate the mapping to a quantum mechanics problem. In Se&ince here we are interested only in the first-passage time
I, we discuss the results for the disorder averaged persigdistribution, we will henceforth s&f(x)=1. Note, however,
tence for positive drift #>0). The results for the negative that this method is powerful enough to deal with the statis-
drift (u<0), fundamentally different from the positive drift tical properties of any arbitrary function&(x) of the sto-
case, are detailed in Sec. IV. We conclude in Sec. V with &hastic process. We will also assume, without any loss of
summary and outlook. The details of the derivation of thegenerality, that the initial positior=0. Forx<0, one will
eigenvalue spectrum of the quantum Hamiltonian are preebtain the same results by changing the sign of the grift
sented in the Appendix A. In Appendix B, we present anEq. (2) is supplemented with the two boundary conditions:
alternative derivation of the disordered averaged persistend® Q,(x=0)=1, since if the particle starts at=0, obvi-
in the case of positive drift. The details of the second-ordepusly its first-passage timé=0 and (i) Qp(x—=)=0,
perturbation theory for negative drift are presented in Appensince the first-passage tinte-« if the particle starts ak
dix C. =0,
In Secs. Il A and Il B we discuss the solutions of the dif-
ferential equation(2), respectively, for the pure caser (

I~ PV0Q,=0. @

Il. GENERAL APPROACH =0) and the disordered case$0).
Consider the particle whose positia(t) evolves via the
Langevin equatior{l) starting initially atx(t=0)=Xx,. The A. Pure case with nonzero drift

persistenceP(xo,t) is the probability that the particle does ¢ is instructive to discuss first the pure case with nonzero
not cross the origin upto tlmestartlng atxg. Itis glso useful  yyift (x#0) in the absence of the random potentiat (
to define the distribution of the first-passage tifo.t.),  —0). The results for the pure case will help us anticipate
which is simply the probability that the particle hits the ori- \ynat to expect for the disordered case later. Solving(Ex.
gin for the first time att=t, starting initially atx,. The . F(x)= _ _

S . ) =u we getQ,(x)=exp(-[u+Vu?+2p]x) that
distribution F(xo,t,) is related to the persistend®Xo.t)  gatisfies the required pboundary conditions. Sir@g(x)

. . . _ _ t .
via the simple relatiorP(xo,t) =1 fOtF(XO't*)dt* - This _ r=e=ptE(x t)dt, we need to invert the Laplace transform
follows from the fact that the integrdlyF (xo,t, )dt, sums ¢ gives

up the probabilities of all the events when the particle hits
the origin before time& and when subtracted from(tvhich is F(x,t) =x(2wt3)‘1’2e‘(x+f”)2’2‘. 3
the total probability, the resulting quantity, by definition, is
the persistence. Our objective is to first complte,,t, ) or Using P(x,t):l—ng(x,t’)dt’, one then gets
its Laplace transform and then use the above relationship to
compute the persistend®(xg,t). X (v N2t
In order to calculate the first-passage time distribution P(x,t)=1—\/?fot’ Szg= (xtut) T2 g, (4)
F(Xo,t,) we employ a powerful backward Fokker-Planck &
approach that has been used before to study the persiste
in the u_nbjased Sinai modEd] as well as in other context; cases() >0, (i) u<0, and(iii) ©=0.
[14]. It is instructive to start with a more general quantity (i) For positive bias away from the originu0), the

ty 1 ’ N . .
Qp(Xo) = (exp(—pJ 5 VIX(t")]dt')), where() denotes the particle eventually escapes to with a nonzero probability
thermal averageY[x(t)] is an arbitrary functional and, and P(x,t) —»P(x) ast—o. Takingt—co limit in Eq. (4)
denotes the first-passage time, i.e., the time at which thene easily obtains this eventual persistence “profiR(x)

NC& us analyze what happens for laitgi@ the three separate

particle first hits the origin starting initially at, at t=0. =1—e 2mX

Note that if we choose/(x)=1, thenQp(x0)=<e_p‘*>xo (i) In the opposite case u=-—|u|<0), it
=[oe P%F(xo,t,)dt, is simply the Laplace transform of follows from Eqg. (4) that as t—e, P(xt)
the first-passage time distributidf(xo,t, ). For the conve- ~2/mx|u| 2t~ 3%~ - 14l0%2 |n this case, a more useful
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information is contained in the asymptotic first-passage dis- 0
tribution F(x,t). From the exact expression B{x,t) in Eq.
(3), we find that in the appropriate scaling limit—o, t
—oo but keepingx/t fixed, the first-passage distribution ap-
proaches a delta functiorE(x,t)H5(t—x>/<‘/|ﬂ|). Equiva- X 0 -7
lf(e;IrI]g\)//vsth?jik;:ﬁ:?ciréﬁnifﬁén@é)é;?;;oi l;fQV\ET(I)C 2 eilao FIG. 1. The change of variable=x—x' for fixed x. The new
) . <P\ variable 7 increases fromr=—o (when x'=x) to 7=x (when
—(JJu|?+2p—|u])x] in the correct scaling limik—0, p x'=0) through the point=0 (whenx’ =x).
—0 but keeping the produgix fixed. Thus in this case, at
late times, the particle essentially moves ballistically withy change of variabler=x—x’. Thus, whenx’ —, 7—
velocity || and crosses the origin for the first time Bt _ o and whenx’ —0, —x. Besidesx’ =x corresponds to
= X/| /.L| . — H — (X ’ r—_ 0
(i) In the unbiased caseu=0), we recover from Eq4) Z )(; (_Sfeﬁ (F)Ig' J\;\/h:::iz] EN())?z {;’ﬁ’())( )?: this an:\';’v(X
the well known exact resultL5], P(x,t) = erf(x//2t), where 7)07=] o 7)AT, pAT) = Ep\AT ) T
I ] variable, Eq.(5) becomes
erf(x) = (2/\/m) f$eY"du is the error function.
In the following section, we switch on the quenched dis- dz,(r) -~ _
order (#>0) and examine the consequences on the 57_ =—Z(n+2[u+Jok(1)z(1)+2p,  (8)
asymptotic properties of the disorder averaged persistence.

where &(7)=&(x—7) and re[—=,x]. Note that((7))
B. Disordered case with nonzero drift -0 and(E( T)E( 7')=8(r— 7'). To simplify further, we sub-

Unlike the pure case, we can no longer solve the differstitutez,(r) = ex ¢(7)] in Eq. (6) and find that the variable
ential equation(2) exactly for the disordered case since ¢(r) satisfies a much simplified stochastic equation contain-
F(x)=u+ Joé(x) now has arx-dependent random part. To ing only additive noiséand no multiplicative noise
make further progress we first make a Hopf-Cole trans-
formation, Q,(x)=exd —[pz,(x')dx']. Clearly z,(x)= d_d’:
—dInQy(x)/dx is a slope variable. By constructio®,(x) dr
automatically satisfies the boundary conditi@y(x=0) o
=1. Substituting this form 0Q,(x) in Eq. (2), we find that ~Where the source terin(¢) is given by
::r;i selgﬂgﬂ\ga:mblep(x) satisfies a first-order stochastic Ric b(d)=—e?+2u+2pe? ®)

X X~

b(¢)+2oé(7), @)

dzy(x") What did we gain in the change of variable frox\
Tzzﬁ(x’)—Z[;ﬁ Joé(x')]zy(x')=2p.  (5)  e[00] to re[—=,x]? The point is that we have, via this
change of variable, gotten around the problem of initializa-
tion of the original variable,(x") at any initial point. To see
The right hand side of the above equation contains a multithjs, let us consider Eq7) which is valid in the regimer
plicative noise term and we will interpret it according to the e[ —=,x]. We can interpret this equation now as a simple
Stratonovich prescription. Note that since Ef) is a first | angevin equation describing the evolution of the position
order equationz,(x’) at an arbitraryx” will be fully deter- () of a classical particle with “time”r starting fromr
mined as a functional of the noise histdg(x')}, atleastin = . Of course, we still do not know the value {7) at
principle, provided the value af, is known at some “ini- = —o_ The point, however, is that this initial condition at
tial” point. Note that this initial point can be anywhere. The ;= —« s completely irrelevant. No matter what this initial
program would then be to substitute this fully determinedcondition atr= — is, it is clear from Eq(7) that eventually
functional to evaluate the integrifz,(x')dx’ and thereby when 7 is far away from its starting point= —, the sys-
determine Q(x)=exd —/oz,(x')dx']. Subsequently one tem will approach a stationary state. This is because the
would perform the disorder avera@g,(x) where the over- Eq. (7) describes the noisy thermal motion of a particle
bar indicates an average over the noise his{@i(x’)} for in a classical potentiaUC,(qs):—fg’b(u)du=e4’—2,u¢
fixed x. +2pe ?—(2p+1). Hence the particle will eventually
However, there is one problem in implementing this pro-reach the equilibrium and the stationary probablity distribu-
gram, namely, the initial value af,(x’) is not specified. tion of ¢ is simply given by the Gibbs measure
Consequently the solution of the first-order equati®nwill L 1L s
involve an unknown parameter, i.e., the initial value of _ _
zp(x"). There exists, however, a rather nice trick to get PS‘(d’)_AeXF{_%UC'(‘ﬁ)}_AeX’{ZL b(u)du},
around this difficulty. This trick has been used before in the (9)
Sinai model in various contex{$,6,14. It is useful to out-
line this trick in the present context. To use this trick, we firstwhere b(¢) is given by Eq.(8) and A is a normalization
fix x in the definitionQ,(x) =exd —w(x)] where we have constant such that” .P.($)d¢=1. For later purposes we
definedw(x)=fézp(x’)dx’. Keepingx fixed we then make also definePg(¢)= z/;ﬁ(d)), where
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_JA 1 (¢ _ G _ #G [a, 1, s
Po( )= VAex EJO b(u)dul; (10 E—ZUW— Eb (¢>)+§b (p)+Ne?|G, (19

the functionb(¢) is given by Eq.(8) and A is such that where a=1/40 and G(¢,O)=exq—1/4of{§5b(u)du]
ffw%((b)dqﬁ:l. R(¢,0)= \/ngfo(gﬁ), using the Gibbs measure in E®). To

So now we know that starting at= — with an arbitrary ~ solve Eq.(14) we make the standard eigenvalue decomposi-
initial condition, by the time the system reachesO, it has  tion
already achieved the stationary measure. But our task is not
yet complete. We now have to evolve the system via its

— —40ET
equation of motion7) from 7=0 to r=x [knowing that at G(‘ﬁ”)_; Cege(p)e ' (15
7=0 the distribution of¢ is given by the Gibbs measure in
Eq. (9)] and evaluate the disorder average where the eigenfunctiongg(¢) satisfy a Schidinger-like
iy equation,
x)=E[exp{ —w(x)}]=E| ex —f e?Mdr! |,
Qp( ) [ p[ ( )}] p{ 0 _Edng((ﬁ)_i_ a_2b2 +Eb, o .
) 5 —dgr | 2 D@+ b (@) +are’ |ge(6)
wherew(7)=[7e?(")d7' as defined earlier an#[-] de- =Ege(¢), (16)

notes the expectation value of the random variable inside the ) o
parenthesis. Let us introduce the quantitR(¢,r)  With b(¢) given by Eq.(8) anda=1/40. The coefficients
=E¢[e*"‘”(7)] that denotes the expectation valee*” at  Ce'S in Eg. (15 are determined from the initial condition,
time 7 with ¢(r)=¢. More precisely, if P,jw(r)  G(#,0)=\Ayq(¢). Using orthogonality of eigenfunctions
=w, ¢(7) = ¢, 7] denotes the joint probability distribution of one finds,
the v?riablesw(r) and ¢(7) at time 7, then R(¢,7)
=[e "P,[w,¢,7]dw. We have introduced the additional _ ” * _
parameteh for later convenience, whose value will be even- Ce= \/Kf_wd(ﬁgE((b) Vo(@)=VA(Gel o), (17
tually set toh=1. Note that if we setl=0, R(¢,7) is
simply the probability distribution o at timer. Thus from  where we have used the standard bra-ket notation of quan-
now on we will refer to the. =0 case as the “free” problem. tum mechanics. Note also that if we consider the free prob-
When\=1, it is clear that lem by setting\ =0, it is easy to verify from Eq(16) that
there is an eigenfunction with enerdy=0 which corre-
— * sponds to the stationary state of the free problem. This zero
Qp(x) =E[exp[—w(x)}]= j,wR(‘ﬁ'x)dgi" (12) energy eigenfunction is given precisely () in Eq. (10)
and the Gibbs measure is just the square of this eigenfunc-
The advantage for this small detour in introducing the newtion, Ps(#) = y5(6).
quantity R(¢, 7) is that one can now write down a Fokker- ~ Substituting thecg’s from Eq. (17) in the decomposition
Planck equation foR(¢,7) in a straightforward manner. In equation(15) and setting finallyr=x we get the following
fact, incrementingr to r+dr in the definition R(¢,7)  expression oR(¢,x) in terms of the eigenfunctions:

=E [exp{—\ge?")dr'}] and using the Langevin equation
(7), we find thatR(¢, ) satisfies the following equation: R(¢,X)= (/,3((1,)2 (0| o) Oe( d)e 47Ex. (18)
E

JR #’R IR
EZZUW—b(¢)%—[b’(¢)+)\e¢]R! (13 By integratingR(#,x) in Eq. (18) over ¢, we finally obtain
the disorder averag®,(x) in a compact form,
whereb’(¢)=db/d¢ with b(¢) given from Eq.(8). Note
that at7=0, w(0)=0 and henc&(¢,0) is just the probabil-
ity distribution of ¢, which is given by the Gibbs measure
R(¢,0)=P¢(¢) in Eg. (9). Starting with this initial condi-
tion at 7=0, we need to evolve Eq13) up to r=Xx, deter-
mine R(¢,x) and then integrate oves in Eq. (12) to finally
obtain the desired quantit®,(x). Note that forA=0, Eq.
13) is simply the ordinary Fokker-Planck equation for the _ —40Ex
éro)bability F()Jli);tribution of¢yin the free problegm _; (Gel bo){olge)e
We next substitute R(¢,7)=exf1/4of¢b(u)du]

Q0= | Rigxds

= f:dcﬁl/fé(qﬁ)ge((ﬁ); (ge| woye 47Ex

G(¢,7) in Eq. (13) to get rid of the first derivative term on =(hole™ "™ yo), (19
the right hand side of Eq13) and find the following evolu- R
tion equation for the Green’s functidd(¢, 7): where the quantum Hamiltonidth in the ¢ basis is given by
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. 9% [a? a . the particle will eventually escape to infinity with a nonzero
H=-3 wﬁ 7b2(¢) + Eb’(¢>)+a)\e¢} =Ho+H;. sample dependent probabili(x). The disorder averaged
(20)  persistence profile is then given B(x) =1—Q(x). Using
this relationship one can then compute, in the lardjenit,
the exact time-independent persistence profile by sefiing
=0 in the general formula fo®,(x) in Eq. (19) derived in
R oo p _ N Sec. IIB. Forp=0, we get from Eq.(8), b(¢)=—e?
Hi=xae” is like a perturbation Hamiltonian and(¢)= 15, substituting thiso(¢) in Eq. (20), setting\=1 and
—e’+2u+2pe %, ——— e o= simplifying, we findH=Hy+1%/8 wherev=u/o andHy
The exact formula  Qu(x)=Jodte PF(xt) is a generalized Morse Hamiltonian given by
=(hole "X yo) in Eq. (19 is, in fact, the central result of
this paper. This result tells us that the Laplace transform of ~ 19 a?
the disorder averaged first-passage time can, in principle, be Hw=~ 2 aT,Z“L 2 €
fully computed for an arbitrary starting positicnarbitraryp
(and hence for arbitrar) and also for any value of the drift It then follows from Eq.(19) that
w provided one can compute all the eigenvalues and the

~ _ A~ ovxl —40H
corresponding eigenfunctions of the Hamiltoniginin Eq. Qo(X) =€~ ""Z(yhgl e~ 7 M| o). (22)

(20)._|n Othef words, the ca_llcu_latlon of the disorder averagedl.o evaluate the matrix element in E@2) explicitly we need
persistence is reduced to finding the spectrum of the quantu% know the spectrum of the generalized Morse Hamiltonian

HamiltonianH. In Seps. ”.I ar_1d.I.V we show how this spec- I:|M . Fortunately this spectrum can be fully determined. This
trum can be determined in limiting cases that lead to exacliculation is done in detail in Appendix A. Here we just

z)iy;nn?(::gi{;?;j/ltcfrlﬁtrget limit) for the persistence(x,t) summarize this spectrum and use the results to compute
The above derivation based on the formal correspondencFe)(X) =17 Qo(x) exphcnly. . .
between the Fokker-Planck equation and the Stihger op- ~The spectrum oH), consists of two parts: a discrete part
erator obviously requires some mathematical clarificationWith negative energies corresponding to the bound states and
The Schialinger operator in Eq20) is a self-adjoint opera- & contmuous part with posmv_e energies corresponding to the
tor with respect to the ordinary? scalar product; whereas Scattering stategsee Appendix A The nature of the spec-
the solution of Eq(13) belongs, in principle, to a different fum depends on the parameter u/o-. It turns out that
functional space. One can show that the mapping to théhere is a critical valuer;=2 such that for.> v the spec-
Schralinger problem provides the properly normalized trum has both the bound states and the scattering states. In
eigenfunctiongat least those belong to the discrete branch offontrast, forr<wc, there are no bound states and only scat-
the spectrur) however, the issue of completeness is far fromtering states exist. We notice that a similar behavior was
being established17] (for a related discussion see Ref. obtained in the study of transport properties of the Sinai
[18]). Fortunately in our case there is a strong indication thafodel[20]. The eigenvalues and the corresponding eigen-
this mapping is mathematically sound. Several functionals ofunctions are given as follows. _

the Brownian motion have been computed by probabilistic Bound StatesThe bound states are labeled by an integer
tools and also by an analysis based on the Morse potenti& The eigenvalues are given by

[19] and the fact that both methods yield the same answer is 1 2 _

a strong indication that this mapping is exact. En=—2[v2=1-n]% n=01,..[v2-1], (23

Here Ho= — 0%/ 9%+ [(a2/2)b?(¢) + (al2)b’($)] is the
Hamiltonian of the free problenicorresponding to\=0),

2_30n=1 4

5 (21)

where[m] indicates the integer part of. Clearly this dis-

Ill. EXPLICIT RESULTS FOR POSTIVE DRIFT  (pu>0) crete spectrum exists provided>2. The corresponding nor-
malized eigenfunctions are given by
In this section we focus on the positive drift &0) case.

We have seen in Sec. Il A that for the pure case, the particle In( ) =bre™ ?W(,_1)12,0-1-n(22€?), (24)
eventually escapes to infinity with a nonzero probability . . )

when there is a positive drifty(>0) away from the origin. WNereWa s(x) is the Whittaker functiorj21]. The normal-
This escape probabilityP(x) is precisely the persistence Z&tion constanb, can also be computed exacilyee Ap-
P(x,t) in the limit t—oc. Due to a nontrivial dependence of PENdXA

this probability P(x) on the initial positionx, we call P(x) o
the persistence profile. Note that from the relationship bﬁ:za(v 2-2nT(n+1) , (25)
P(x,t)=1—[LF(x,t,)dt,, where F(xt) is the first- I'(v=1-n)
passage time distribution, it follows that the persistence pro\'/vherel“(x) is the standard Gamma function.
file is given byP(x) = 1—[gF (x,t,)dt, = 1= Qq(x), where Scattering StatesThe scattering states have positive en-
we recall thatQ,(x)=fge” P'F(x,t)dt is just the Laplace ergies labeled by the wave vectqr Eq=q%/2 with 0<q
transform of the first-passage time distribution. <. The corresponding eigenfunctions are given by

In the disordered case with positive drift, one would ex-
pect a similar behavior; namely for each sample of disorder, Uq( ) =b(q)e™ ?2W(,_1ypiq(2a€?), (26)
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where the coefficienb(q) is given by

T'(1-v/2—iq)

—iq—1/2
(22)7" T(—2iq)

1
b(q)= N (27)
a

This coefficientb(q) is chosen such that in the limi—
— o [where the quantum potential in the Hamiltonidgy in
Eq. (21) vanishe$ the eigenfunctiong,(#) approaches a
plane wave form, i. egq(¢)—>1/\/ﬂ[e'q¢+r(q)e"‘w’] as
p— —, wheree'q‘f’ represents an incident wave traveling
in the dlrectlon of the positivep and e 9% represents the
reflected wave traveling in the opposite direction wit)
being the reflection coefficierffor details see Appendix A
Having obtained the full spectrum d?HM we are now
ready to compute the persistence profléx) =1—Qq(X).
Expanding the right hand side of E@2) in the energy basis
of Hy and using the results on the spectrumtf summa-
rized above, we get

[v/2—1]

Q"(X):ewzw[ S, (ol o) 2221
n=0

(28

« o2
+fo dal(gql o)l ?e 297,

a result that is valid for alk and for allx>0. The function
Yo( ) is already known. In fact, fop=0, we find from Egs.
(8) and (10) the following normalized expression:

1 1
= ——e? 29
Po( ) r(v)(za)vexl{ oS T3 4. @

Using this expression ofsg(¢) and the eigenfunctions in
Egs. (24) and (26) one can easily evaluate the matrix ele-
ments(gn| o) and(gq| o). For the bound states, we get

(lvor= [~ dbun$10,(9)

I'(n+1)I'(v—1—n), (30

20T (v)

14

whereb,, is given by Eq.(25). Similarly for the scattering
states, we obtain

<gq| o) = ffwd¢¢0( ¢)gq(¢)

b(q)

V2ol (v)

with b(q) given by Eq.(27). Substituting these matrix ele-
ments in Eq.(28) we get our final expression,

T (vi2—iq)T(v2+iq), (31

PHYSICAL REVIEW E66, 061105 (2002

[v/2—1]

2b2

n=0

e oV 2x/2

QO(X) 2 F(V

XT?(n+1)T2(v—1—n)e2o2-1-m*

+f dalb(q)| I (v/2—iq)|*e~24"%|, (32)
0

whereb, and b, are given, respectively by Eq&5 and
(27). Substltutlng Eq(32) in the relationP(x) =1— Qq(x)
then gives us the exact persistence profile valid for any
>0 and anyu>0.
__Itis instructive to derive explicitly the tails of this profile
P(x) for smallx and largex. Consider first the limitx— 0.
While we can use the general solution in E§2) to derive
the smallx behavior, it is easier to consider the original
equation (19) which for small x gives Qg(x)—1
—4ox{go|H| o). Since H=Hy+H,; and moreover since
Yo( ) is a zero-energy eigenfunction bf,, we getQo(x)
—1—40x(iho|H1| o). Expanding the matrix element in the
¢ basis, usingd,=ae? [setting\=1 in Eq. (20)] and the
expression ofg(¢) from Eq.(29) and evaluating the result-
ing integral, we geQqy(x)—1—20vX. Usingv=pulo, we
get P(x)=2ux asx—0. Thus we obtain an interesting re-
sult that the slope 2 characterizing the linear growth of the
profile nearx=0 is completely independent of the disorder
strengtho. In fact, the smallk behavior of the disorder av-
eraged persistence profile is identical to that of the pure case.
We now turn to the other limik—c. Here we use Eq.
(32). First consider the case whet>2. Then we know from
Eq. (32) that there exist bound states. In that case it is evi-
dent that for largex, the term corresponding to the lowest
energy bound staten&0) will be the most dominant term
on the right hand side of E¢32). Retaining only this leading
n=0 term in Eq.(32) and usingb§=2<r/l“(v—2) we get
Qo(x)=(v—2)/(v—1)e 270"~ X agsx—x for »>2. Con-
sider now the opposite case whed 2. In this case there are
no bound states and there is no contribution from the discrete
sum on the right hand side of E(2). The only contribution
is from the integral representing the scattering states. For
large x, the most dominant contribution to the integral will
come from the smalf regime. Expanding th& functions
for small g, we find after preliminary algebraQq(x)
—A(20%) 32 "2 g5 x = for v<2, whereA, is a
constant(see below. Exactly atv=2, we get from Eq(32),
Qo(x)=e"27%/\27ox for large x. Let us summarize the
three different types of large behaviors of the persistence
profile,

((v—2
e 2(v—1)ox »>2
v—1
- 1
1-P(x)— e v=2 (33
2maX
AV —v2axI2 <2
| (20_)()3/2 !
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where A, = 732I"2(v/2)/T (v)[1—cos@v)]. Evidently the of Eq. (19) and find that ax—o the leading contribution
shape of the profile in Eq(33) for large x changes as»  comes from the ground state enefy of H,

varies through the critical point.=2. The reason for the

eX|sten_ce 01_‘ this critical point is evident from our analysis. Qp(X)HK%lgOMze—MEOx, (34)
Essentially it happens due to the loss of bound states as

decreases from>2 to »<<2. Note that this critical behavior ) .
at finite »v=v.=2 could not be derived by the RSRG where|go) is the ground state dfi. It is clear from Eq(34)

method. The RSRG method is valid only in the-0 limit that to evaluate the largeasymptotics we just negd to com-
where the exact result in E€33) coincides with the RSRG  Pute the ground state energy of the HamiltoniarH in Eq.
results[8]. (20). Unfortunately, even the ground state enekgyis hard

We conclude this section by pointing out that it is possibleto compute exactly for arbitrarg. One can, however, make
to have an alternative derivation of the disorder average®@rogress in the—0 limit. To see this we recall that)o) in
persistence profnm for x>0 by a completely different Eq.(34) is the eanct zero energy eigenstate of the free part of
method. This method relies on mapping the calculation of théhe HamiltonianH, [see the discussion after EQ.7)], i.e.,
persistence profile to calculate the disorder average of thfly|y,)=0. Knowing this exact fact, we can then determine

ra_ltio of two partition functi(_)ns in the Sir!ai model. This Map- the ground state enerdy, of the full HamiltonianH =M,
ping makes use of certain mathematical properties of the -

Brownian motion. The average of this ratio of partition func- *H1 by treat|ngH1=).\ae‘/’ (where eventuglly W? will set

tions was already computel®,22] in a different context. A=1) as a perturbation to the free Hamiltoni&ty. For

Using those results one can then recover the results in E§Xa@mple, to first order in the perturbation term, we Bgt

(33). The derivation of this mapping is presented in Appen-=0+(o|H1| o) where 0 indicates the fact that the ground

dix B. state energy of the unperturbed Hamiltonfagis exactly 0.

We then decompose this matrix eleméus|H | ) in the ¢

basis and useH;=ae? (setting A\=1) to obtain E,

=af°ﬁm¢8(¢)e¢d¢. The normalized wave functiotty( @)
We now turn to the case when<0 which corresponds to is already known from Eq(10) and has the following ex-

a drift towards the origin since the initial positior>0. The  plicit expression:

situation here is very different from the positive drift>0

case discussed in the preceding section.;=ai0, we expect (Zp)v'/Z et p

from the analogy to the pure case that for each sample, they (4)= /—GXF{— ——¢p——e?|,

particle will definitely cross the origin as—% no matter 2K, (\2pl o) 4o 2 20

what the starting positiox is. Hence foru<0, the persis- (39

tence P(x,t)—0 ast—o for all x, unlike the x>0 case

where the persistence approaches a time independent profidhereK ,(x) is the modified Bessel function of index[21]

P(x,t)—P(x) ast—c. Therefore what is interesting in the and we have used the definitiori= — u/o. Using this ex-

<0 case is to compute the asymptotic behavioPoX,t) plicit form of #y(¢) and carrying out the integral ik,

for large t. Recalling the definitions P(x,t)=1 =af°fw¢//§(¢)e"’d¢, we get, to first order in perturbation

—[oF(x.t)dt, and Qpu(x)=fge P'F(x,t)dt, where theory,

F(x,t) is the first-passage time distribution, we see that the

IV. EXPLICIT RESULTS FOR NEGATIVE DRIFT (u<0)

analysis of the large but finitelimit of the disorder averaged K,_,(\V2plo)
persistence®(x,t) requires an analysis of the—0 limit of Eo=av2p ————. (36)
K, (V2p/o)

the Laplace transforn®@,(x) [rather than exactly ap=0
whereQq(x) =1 trivially for 1 <<0]. In fact we will see later ) _ ] . )
in this section that in this limiP(x,t) or equivalentlyF (x,t) The result in Eq(36) is only up to first order irH. Itis
display a variety of scaling behaviors as one tunes the refl0t clear, so far, why one should stop at first order only. In
evant parameter’ = — u/o. other words, we have not yet specified in what sefsds

As in the case ofu>0, the starting point of our analysis “small” compared toﬂo. Note that in deriving Eq(36) we
for ©<0 is the central result in Eq19) which is valid for all  have not yet taken thp—0 limit. In the limit p—0, using
m. Unlike the u>0 case, we cannot, however, pp=0  the asymptotic properties of Bessel functigrl] in Eq.
straightway in the Hamiltoniafl in Eq. (20). To derive the  (36), we find
time-dependent asymptotics for largewe need to analyze

the spectrum ot keepingp small butnonzero Unfortu- a o, v'>1
nately, for nonzerg, it is hard to determine the full spectrum o(v'-1)""
of H exactly. Fortunately, however, it is possible to extract a 3
. . . . Eo— —Zpl r=1 (37
the leading asymptotic behavior as-»o andp—0 without UP np v
too much trouble. To see this, we consider the energy eigen- ,
value decomposition in the second line on the right hand side aB, p” 0<v'<1,
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where we recall thaa=1/40 and the constar8,, is given =48t—x/o(v'—1)) in the scaling limitx—o, t—ow~ but
by keeping the ratio/t fixed. This result is very similar to the
pure case. TheS function indicates that at late times the
21—V’r(1— v') particle basically moves ballistically with an effective veloc-
B, = (38 ity o(»'—1). Similarly for »'=1, by inverting the Laplace

2y —1 ’ )
o I'(v) tranform we find that in the scaling limit—o, t—c but

keeping the ratioxIn(x)/t fixed, F(x,t)= &(t—x In(x)/c).
The situation becomes somewhat different#6r< 1. In this
case the Laplace inversion indicates that in the scaling limit
x—®, t—oo; but keeping the ratix™”'/t fixed, the first-
passage time distribution approaches a scaling fB(mt)

~(1/t)f(t/x1’V/). The scaling functiorf(y) can be formally

Thus, in generalEy~p® asp—0, wherea=1 for v'=1
anda=v' for v'<1 with additional logarithmic corrections
at »'=1. Hence basicallfg, is small for smallp. Naively
one would expect that if, indeed, we carry out the perturba

tion theory in|:|1 to higher orders, the resulting terms will be
lower order inp as p—0. This naive expectation, fortu- \ , 8 )
nately, turns out to be true. In fact we show in Appendix c'ritten in terms of Ley functionL,(y) and we getf(y)

how to estimate the second order term for snmind it = YLw(¥). The Levy function is formally defined by the

turns out to be at least d®(p**1) and hence negligible Bromwich integral(see the Appendix of Ref5])

compared to the first-order terfm~O(p®)] in the p—0 1 (diin ’

limit. For smallp, this argument therefore justifies in keeping L, (y)= = dseV Bvs” (40)

only the first-order term in the perturbation theory in evalu- 2 Jg-ix

atingE,. Note that the eigenfunctioig,) also gets modified

from the free eigengunctiofy,) due to the perturbation whered is such that the=d line in the compless plane lies

term. to the right of all the singularitiefbranch cutsbut is other-
Substituting thgo— 0 results from Eq(37) in Eq.(34) for ~ wise arbitrary.

largex and usinga= 1/4o, we then get three different types ~ An explicit expression of the lwy function can be ob-

of scaling behaviors depending on, tained only for a few special values of [5]. For example,
for v'=1/2, we getf(y)=yLy(y)=e Y¥/\2xy. This in-

exd—pXo(v'—-1)], »'>1 dicates thatF (x,t)=xe */%/\27t> and hence the persis-
Qp(x)—1{ exdpin(p)x/a], v'=1 (39 tence P(x,t)=1—fLF(x,t")dt’ =erf(x/\2t). We thus ar-

rive at an amazing result that fof =1/2, i.e.,u= —0/2, the
disorder averagedersistence has the same asymptotic be-

. ) . havior as thepure case without drif{fu=0, c=0) (as de-
whereB,, is given by Eq.(38). Note that to leading order in a4 in Sec. I A. A similar coincidence at this special value
small p, we need to keep only the zeroth-order term in the

, 5 o of »'=1/2 was also noted in the context of occupation time
amplitude|{o|go)|* of the exponential in Eq(34). To the

distribution in the Sinai modélL6]. Thusu= — /2 seems to
zeroth ordefgg)=|#o) and hence to leading order this am- ¢LL6] me o

. X / ; i L . be a special line in they(— o) plane where the Sinai model
plitude is exactly 1 sincéy,) is normalized. Thus it is evi- with drift shares the same asymptotic properties as

dent from Eq.(39) that.forv’>1,the correctscaling limit is the pure unbiased Brownian motion. Another solvable
x—o, p—0 but keeping the produgtx fixed. On the other point is »'=1/3, where we get f(y)=yLyx(y)

hand, forv' <1, the correct scaling combinationrig’ X. =(agl2my)Kys(agl\y) with the constant ay

It turns out that the exact asymptotic results in E29) = 4/3%21(2/3)/T (1/3)]¥2o.
were also derived recently by mathematicians by using com-  por generab’ <1, while we cannot calculate the scaling
pletely different methods that involved rather heavy mathynction f(y) explicitly, the behaviors at the tails can be
ematical machineries. The first derivation is _due to Kawazqaasny determined. For example, first consider the lignit
and Tanaka who used the so called Kotani’'s formula and:t/x””'—mo ie whent>x¥" Using the laraes behavior
Krein's theory of stringg10,11]. However their method did rn L 9 99

. - . of  the Lery  function [5] L. (y)=B,I'(1

not permit the explicit evaluation of the consta), . More . ) o s
recently, Huet al.[12] presented yet another completely dif- + ¥ )S'n(j"” )y » We getF(x,t) =~ Box/t” 77, wherep,
ferent derivation by mapping the persistence problem with=»'2'"/T'(v")o®” ~1.  The persistence P(x,t)=1
negative drift onto that of a Bessel process and then using f})F(x,t’)dt’ then behaves in this limit as
some theorems on this Bessel process.eHal. managed to
compute the coefficienB,, explicitly. Note, however, that 21-v' X
the constanB, in Ref.[12] has an apparently rather differ- PX,t)~ ——— —
ent looking form than our expression in E@8) and it re- I'v)e t
Ejtg:]etisc;. bit of work to show that indeed they are exaCtIyindicating_ a power law decal(x.t)~t—* for larget where

To derive the asymptotic properties of the first-passagde Persistence exponem=»’. We now fumn to the
time distributionF(x,t) in the time domain, we need to in- other tail of the scaling functiorf(y) when y=t/x""
vert the Laplace transform in E¢39) with respect tqp. For ~ —0, i.e., whent<xY"'. Using the properties of the
v'>1, the Laplace inversion is trivial and we gE{(x,t) Lévy function neary—0 [5], we get f(y)=yL,(y)

exd —B, p”'x], v'<1,

ot xW (42)
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%e—(l—u’)/v’g/ 27T(1— V’)é’, where é/:(yv'lvrBV,)l/(l—v')_ ACKNOWLEDGMENT
This indicates an essential singularity yat 0. Using this We thank D.S. Dean for useful discussions.

asymptotic behavior of(x,t) in the relation P(x,t)=1
— [HF(x,t")dt" we find the following behavior for the per-

. . APPENDIX A: DERIVATION OF THE SPECTRUM
sistence:

OF THE HAMILTONIAN Hy,

1 W |~ L2010 In this appendix we derive the spectrum of the general-
P(X,t)~1— ——— _,) ized Morse Hamiltonia.rh:lM given by Eq.(21). We show that

V2mB(1—v") \ t” the spectrum has a discrete part with negative energies cor-
. responding to the bound states and also a continuous part
« 1-v x | Y= with positive energies corresponding to scattering states. The

exg — —

B
whereB;=(v'B,,)Y@~*") andB,, is given by Eq.(38).

. (42 eigenfunctions satisfy the Scltinger-like equation,
Let us summarize the main behavior of the disorder aver- (A1)
aged persistence far'<1. We find that forv’' <1, there

exists a single time scalg~xY*" depending on the initial
position x. For t>t,, the persistencd®(x,t) decays as a
power law with an exponem= v’ and the amplitude of the
power law depends oxas in Eg.(41). In the opposite limit

t<x'

1 d%ge(p) |2 a(v—1)
_E%cﬁ;+ 220 A et g)=Ege( ).

Let us remind the readers that=1/4o0. It turns out to be
convenient to make a change of varialgte 2ae?. Further-
more, let us substitutge(¢)=e **f(2ae?) in Eq. (Al).
Then the functiorf(y) satisfies the differential equation

whent<t, , the persistence drops extremely sharply from its 2 B

initial value P(x,0)=1 as indicated by the essential singu- R B I s PO
larity in the second term on the right hand side of ER) dy 4 2y y

whent<x',

where we have suppressed taelependence of the function
(y) for notational convenience. We next consider the nega-
ve and the positive part of the spectrum separately.

Bound statesThe bound states are in the negative energy
part of the spectrum. Let us substitle= — y?/2 in Eq.(A2)
where y is the eigenvalue to be determined. The second-
order differential equatiofA2) with E= — y?/2 is known to

Let us conclude this section on negative drift by one final
remark. We note that even though we have assumed throug{m
out this section that is strictly negative, we can safely take :
the limit u— 0~ in Eq. (36) which givesEy~—1/2 Inp]in
the limit p— 0. It then follows from Eq(34) that in the limit
of vanishing drift, one gets the asymtotic resQif(x)—1

+(2al/lnp)x+ ..., whenx<—1/Inp. From thi.s it follows have two linearly independent solutio¥;, sy, (y) and
that P(_X,t)_wZa'X/Int for_lnt_>x, thus recovering the stan- W_(, 1y2,(—Y) whereW, 4(x) is the Whittaker function
dard Sinai model behavior in the zero drift linh&,6]. [21]. Thus the most genéral solution of EA2) can be

written as

V. SUMMARY AND PERSPECTIVES f(y):DlW(V—l)/2,y(y)+ DZW—(V—l)/Z,’y(_y)' (A3)
In summary, we have obtained exact asymptotic results

for the disorder averaged persistence in the Sinai model witvhereD, andD, are arbitrary constants. For a large argu-
an arbitrary drift. Our method maps exactly the problem ofment, the Whittaker function is known to have the
computing the persistence to the problem of finding the eiasymptotic behaviof21] Wa,,;(x)~X“e_X’2. On the other
genvalue spectrum of a single-particle quantum Hamiltonianhand the bound states must be normalizable and hence the
We have shown that it is possible to find this spectrum ineigenfunctiorgg(¢) must vanish agp— +oo. The vanishing
certain cases that allowed us to obtain exact asymptotic rdsoundary condition atp=<< indicates that the constait,
sults for arbitrary drift. We note that these results could not=0. Note that here we have assumgttO. If <O, then
have been obtained from the existing physical metieds, this boundary condition instead sdds =0. However, the
the RSRG methagdthat provide exact results only in the resulting solution is the same. In other words the eigenfunc-
limit of zero drift. Our results show that there is a rich vari- tions corresponding tey and — vy are the same and not lin-
ety of asymptotic behaviors in the persistence as one tunesarly independent of each other. Thus without any loss of
the drift. In particular, the asymptotics undergo interestinggenerality we can assumg>0 and setD,=0. Thus the
“phase transitions” at certain critical values of the control eigenfunction in terms of the original variable is given by
parametew (the relative strength of the drift over the disor-
den, e.g., atv=2, »=0, andv=—1. It would be interest- ge(¢)=D1e” PAW,_1)p,(2ae?). (A4)
ing to extend the exact method presented here to calculate
other properties in the Sinai model with finite drift, such asNote that the eigenvalug is yet to be determined. This is
the persistence of a thermally averaged trajectory for whictdone by employing the vanishing boundary condition at the
the results in the zero drift limit are already kno\87]. other tail, namelygeg(¢)—0 as¢— —. Using the smalk
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behavior ~of the  Whittaker function, W, 5(x)
—T(2B)IT[1/2+ B—a]x P12 asx—0 in Eq. (A4) as ¢
— —o0, we get

9e(¢)~Dy(2) 72 LY e (as)

(1—vi2+ ) °

Thus the eigenfunction diverges exponentially das> — .

PHYSICAL REVIEW E66, 061105 (2002

I'(—2i : :
0a()—+b(Q)| T (2a)/T* ¢

(1—v/2—iq)

I'(2iqg)

—iq+1/24—iq¢
T Tt (2 e,

(A10)

Clearly thegq(¢) functions are non-normalizable. More-

The on|y way the eigenfunction can Satisfy the boundarwver, unlike in the case of bound states where the boundary

conditiongg(—)=0 is if the denominatol’(1— v/2—v)

condition at¢p= —~ decides the discrete eigenvalues, in this

in Eq. (A5) is infinite. This happens when the argument ofcase we have no such condition indicating that all possible

the Gamma function is a negative integer &/2— y=—n
with n=0,1,.... This thus fixes the eigenvalug=v/2—1
—n with n=0,1,.... However, note that the condition
>0 indicates that the maximal allowed value foiis [ v/2
— 1], where[x] denotes the integer part ®f Thus finally the
bound states have discrete eigenvallies— y?/2=—(v/2

values ofg=0 are allowed. Note that, as in the discrete case,
g>0 andg<0 correspond to the same eigenfunction and
hence the allowed values dflie in the range Gsq=<«. To
determine the constart(gq) we note that in the taikp—
—oo, the quantum potential in EA1) vanishes. The result-
ing differential equation withE=q?/2 allows plane wave

—1-n)?/2 and the corresponding eigenfunctions, labeled bysolutions of the form

n, are given by

Un(d)=bne” "W, _1),10-1-n(2a€?), (AB)
whereb,=D; is to be fixed from the normalization condi-
tion ffwgﬁ(¢)dq§= 1. To perform this integral, we first use
the fact that for positive integer, one can rewrite the Whit-
taker function in terms of the Laguerre polynomig24] and
then use the following identitysee the Appendix of Ref.

[23]):

“d P 5 I'(a+n+1)
fo xxX* e LA(X)] = el D) (A7)
One obtains

2:20(v—2—2n)F(n+1) A8)

n T(v—1-n)

Scattering statesNVe now turn to the positive energy part

of the spectrum and s&=q?/2 in Eq. (A2). The resulting

differential equation, once again, has two linearly indepen-

dent solutions_W(V,l),z,-q(y) and W_(,_1ypjq(—y). Note
that the fUnCtlonW_(V_l)/zjq(_y):W_(V_l)/zjq(_zaed))
~expe?) as p—». Since the eigenfunctiogg(¢), even

1 _
gq(¢)~7[e'q¢+r(q)e*'q¢], (A11)

w

whereed% represents the incoming wave coming frabs

— ande 9% represents the reflected wave going towards
¢=— with r(q) being the reflection coefficient. The am-
plitude 1A27 ensures that the plane wavegq(x)
=1/\27e'% are properly orthonormalized in the sense that
(Yglpg)=6(q—q") where 5(2) is the Dirac delta function.
Comparing Eqs(A10) and(A11) in the regimep— —x, we
determine the constabi(q) up to a phase as

T(1-v/2—iq)

2 —-ig—1/2
3) T(—2iq)

(A12)

1
b(a)=——(
T

This completes the derivation of the spectrum of the
HamiltonianH, .

APPENDIX B: ALTERNATIVE DERIVATION OF THE
PERSISTENCE PROFILE FOR p>0

For each sample of the disorder, the persistence profile
P(x) is related to the Laplace transfor@y(x) of the first-
passage time distribution @=0 via the relationP(x)=1
—Qo(Xx). The quantityQy(x) can be obtained exactly by

though non-normalizable for scattering states, cannot divergg©!Ving the Eq(2) with p=0,

superexponentially ag— oo, this second solution is not al-

lowed. Keeping only the first solution, we get the eigenfun-

tions, now labeled by,
Uq( ) =b(a)e” ?2W(,_1ypiq(2a€?). (A9)

The question is how to determine the constafd) in Eq.

(A9). This is because, unlike the bound states, the eigenfun
tions in Eqg.(A9) are non-normalizable. To see, this let us

examine the behavior af,(#) near the tailp— —o, as in

Z,(X)
Z,(®)’

Qo(x)=1~- (B1)

whereZ,,(x) = [3e?/*)dx’ is the partition function in a fi-
nite box of size x with U(x)=—[5F(X')dx =—ux
+oB(x) being the random potential. It turns out to be

useful to rewrite Eq(B1) in a slightly different form using a

well known property of the Brownian motion: B(x) is a
Brownian motion, thenB(x)—B(x')=B(x—x') where

the discrete case. Using the asymptotic properties of thB(x) is another independent Brownian motion aadindi-

Whittaker function, we find that, ag— — oo,

cates that the random variables on both sides have the iden-
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tical distribution, though they are not equal. Using this prop-where we have used the fact theggt=0 as discussed earlier.

erty and after a few steps of elementary algebra, one cabsing the fact;<e,<es, ..., in Eq.(C2), one can imme-
rewrite Eq.(B1) as diately obtain an upper bound toAE,,
Zu(=) 1 . 2
Q) =1-P(X)=—F2——, (B2 —AE,= - X (ol Faly) . (C3)
Z,(®)+Z_ ,(X) €1 n>0

By adding and subtracting the=0 term to the sum on the
right hand side of the above inequality and using the com-
pleteness of eigenfunctions we get

wherez_ ,(x) = [$e~ 2+ *286)dx’ . Interestingly, exactly
the same ratio as in E4B2) has appeared earlier in other
contexts and its averag@ver disorder is known exactly
[9,22]. Using these known results and setting u/o, we 1
get exactly the same asymptotiargex) persistence profile —AE,< —[<l/fo||:|i| i//o>—|<l//o||:*1|¢o>|2]- (C4)
as in Eq.(33), which was obtained in Sec. Ill using a com- €
pletely different method.

The quantity S= (ol 3| o) — (1ol H1| o) |? inside the

APPENDIX C: ESTIMATION OF THE ENERGY CHANGE parenthesis on the right hand side of the inequaili§) can
DUE TO THE SECOND-ORDER TERM IN be evaluated exactly. In general, for amy one can express
PERTURBATION THEORY FOR <0 the matrix element(yo|HT|yo)=a"/". y5(b)e™d¢ in

the ¢ basis by usingi;=ae’. We then substitute the ex-
plicit expression ofy(¢) from Eq.(35). The resulting inte-
gral can be performed exactly using the idenfi]

In this appendix we consider the cage<0 and provide
an estimate of the second-order contributidiE, to the
ground state energiE=0+AE;+AE, of the full Hamil-
tonian H=H,+H, given by Eq.(20), treating H,=ae’ . 5
(setting\=1) as a perturbation to the unperturbed Hamil- j xV—le—VX—ﬁ/dezz(—
tonian Ho=—30%d¢?+Vo(¢). The quantum potential 0 Y
Vo(¢) is given explicitly by

v/2

K,2\(By). (CH

In fact, throughout this paper, we have heavily
2 ) used this identity. We then get (AT o)

162 P =a™(2p)™K -,/ (\2p/a)IK . (\2p/o). The expression
of Srequires the results fan=2 andm=1 and we get

Vold)= g ae’?+(v' —1)e?+4a

- '+1)e” ?+4ap’e ??|.
2p(v'+1)e” ?+4ap’e } (Cy oo 22 K, (\2plo) Ki—v/(@/‘f)]
p)=za‘p - .
K, (\2p/ K!2(\2p/
In writing the explicit form of the potential we have substi- v (\/_p ) v (\/_p ) (C6)
tuted the expression di(¢) from Eqg. (8) in Eqg. (20) and
used the definitiora=1/40. Let us recall that the ground 05 . .

state energy of the unperturbed Hamiltonfagis 0 and the
ground state wave function i%,(¢) given explicitly by Eqg.
(35 is Sec. IV. The first-order contributionAE; \

= (i)o|H110o) Was already evaluated exactly in E§6) and @
was shown to scale asp® asp—0 with =1 forv')1 and ~— or W
a=7v' for v'<1. The goal of this appendix is to show that &
the second-order contributiakE, is negligible compared to
AE; asp—0.

Note that forp>0, it is clear from Eq(C1) thatVq(¢)

05 |
—© as ¢— *+o. This indicates that fop>0 the spectrum
of I:lo is discrete and consists of bound states only. ;€6
denote the discrete energy eigenfunctionsHof with the
corresponding eigenvalues denotedeqy The second-order
contribution to the ground statkE, then follows from the T 05 1
standard quantum mechanics, 7y 7z
~ 2 A 2 FIG. 2. The shape of the potenti¥h(z) in Eq. (C7) is shown
AE,= 2 M - _ 2 M for parameter valuesi=1, »'=0.5, andp=0.1. The potential has
n>0 €~ €y n>0 €n a minimum atz=z,~p and a typical widthW~p in the limit p
(C2 —0.
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Using the expansion of Bessel functions for small argumentgoints z.. (€), whereVq(z)=e, can be easily estimated for
[21], it is easy to show that in the limfi—0, S(p)~ p? for smallp since in this limit one just needs to solve a quadratic
v'>2, §(p)——p3np for v'=2 and S(p)~p” for »'  €quation and we get
<2. 4a

Having established the behavior 8for smallp, we now z.(e)~ p+0(p?).
need to estimate the gan (the energy of the first excited [v'+1%V2v'+1+2€]

state ofH) for smallp on the right hand side of the inequal- ence the typical width of the potential at energgcales as
ity —AE;=<S(p)/e, in Eq. (C4). To estimate the gap, We \y(e)~z, (e)—z (e)~p in the p—0 limit at any finite
examine the quantum potential in EE1). It is convenient  |oyele For smallp, one can approximate the potentiay(2)

i i b ) - . . .
first to make a change of variabie-e” so that 6<z<. In 3r4und its minimunz=z, by a harmonic oscillator potential,
this new variable the quantum potential in EG1) reads Vy(2)=~— (20" +1)/8+ w?22[2 where the frequency is es-

2 ) timated from the typical width, i.e?W?/2~0(1). Since

(C8)

Vo(2)= g az2+(v' —1)z+4a 162~ p W(e)~p, we find that the frequency scales @s-1/p asp
—0. One knows that the gap between the first excited state
and the ground state in a harmonic potential scaleg;as
(C7) ~w. Thus we estimate that the energy of the first excited

state scales as;~ w~1/p in the limit p—0.

The shape of this potential is shown in Fig. 2. Note that the Substituting this estimate of the gap in the inequality
potentialVo(2) has a minimum az=z,, determined from ~AE2=<S(p)/e, and using the smajp estimates ofS(p)

the equationdVq(z)/dz=0, which gives a2+ (v —1)2 derived earlier, we find that as—0, —AEzs,p for v
+2p(v' +1)zo—8ap?=0. In the limitp—0, the only real >2, —AE,<-p’Inp for »'=2 and—AE,<p” ** for v’
root of this equation is a,~4ap/(v'+1). The value of the <1. Comparing these results with the fi,rst-order contribu-
potential at this minimunV(zp) — —(2v'+1)/8+O(p) as  tion, whereAE;~p for v'>1 andAE;~p" for v’ <1, we
p—0. We also need to estimate the typical width of theconclude that the second-order contribution is negligible
potential W(e) at an energye for small p (see Fig. 2 The  compared to the first-order term in the lingit-0.

2p(v'+1) 4ap?
—_ _|_ 2
Z Z
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